4 resultados para Osteoporotic Fractures
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The carbonate outcrops of the anticline of Monte Conero (Italy) were studied in order to characterize the geometry of the fractures and to establish their influence on the petrophysical properties (hydraulic conductivity) and on the vulnerability to pollution. The outcrops form an analog for a fractured aquifer and belong to the Maiolica Fm. and the Scaglia Rossa Fm. The geometrical properties of fractures such as orientation, length, spacing and aperture were collected and statistically analyzed. Five types of mechanical fractures were observed: veins, joints, stylolites, breccias and faults. The types of fractures are arranged in different sets and geometric assemblages which form fracture networks. In addition, the fractures were analyzed at the microscale using thin sections. The fracture age-relationships resulted similar to those observed at the outcrop scale, indicating that at least three geological episodes have occurred in Monte Conero. A conceptual model for fault development was based on the observations of veins and stylolites. The fracture sets were modelled by the code FracSim3D to generate fracture network models. The permeability of a breccia zone was estimated at microscale by and point counting and binary image methods, whereas at the outcrop scale with Oda’s method. Microstructure analysis revealed that only faults and breccias are potential pathways for fluid flow since all veins observed are filled with calcite. According this, three scenarios were designed to asses the vulnerability to pollution of the analogue aquifer: the first scenario considers the Monte Conero without fractures, second scenario with all observed systematic fractures and the third scenario with open veins, joints and faults/breccias. The fractures influence the carbonate aquifer by increasing its porosity and hydraulic conductivity. The vulnerability to pollution depends also on the presence of karst zones, detric zones and the material of the vadose zone.
Resumo:
Thrust fault-related folds in carbonate rocks are characterized by deformation accommodated by different structures, such as joints, faults, pressure solution seams, and deformation bands. Defining the development of fracture systems related to the folding process is significant both for theoretical and practical purposes. Fracture systems are useful constrains in order to understand the kinematical evolution of the fold. Furthermore, understanding the relationships between folding and fracturing provides a noteworthy contribution for reconstructing the geodynamic and the structural evolution of the studied area. Moreover, as fold-related fractures influence fluid flow through rocks, fracture systems are relevant for energy production (geothermal studies, methane and CO2 , storage and hydrocarbon exploration), environmental and social issues (pollutant distribution, aquifer characterization). The PhD project shows results of a study carried out in a multilayer carbonate anticline characterized by different mechanical properties. The aim of this study is to understand the factors which influence the fracture formation and to define their temporal sequence during the folding process. The studied are is located in the Cingoli anticline (Northern Apennines), which is characterized by a pelagic multilayer characterized by sequences with different mechanical stratigraphies. A multi-scale analysis has been made in several outcrops located in different structural positions. This project shows that the conceptual sketches proposed in literature and the strain distribution models outline well the geometrical orientation of most of the set of fractures observed in the Cingoli anticline. On the other hand, the present work suggests the relevance of the mechanical stratigraphy in particular controlling the type of fractures formed (e.g. pressure solution seams, joints or shear fractures) and their subsequent evolution. Through a multi-scale analysis, and on the basis of the temporal relationship between fracture sets and their orientation respect layering, I also suggest a conceptual model for fracture systems formation.
Resumo:
Introduction: Open fractures of the leg represent a severe trauma. The combined approach, shared between plastic and orthopaedic surgeons, is considered to be important, although this multidisciplinary treatment is not routinely performed. Aim of this study was to verify whether the orthoplastic treatment is of any advantage over the traditional simply orthopedic treatment, through a multicentric inclusion of these unfrequent injuries into a prospective study. Material and methods: The following trauma centres were involved: Rizzoli Orthopaedic Institute/University of Bologna (leading centre) and Maggiore Hospital (Bologna, Italy), Frenchay Hospital (Bristol, United Kingdom), Jinnah Hospital (Lahore, Pakistan). All patients consecutively hospitalized in the mentioned centres between January 2012 and December 2013 due to tibial open fractures were included in the study and prospectively followed up to December 2014. Demographics and other clinical features were recorded, including the type of treatment (orthopaedic or orthoplastic). The considered outcome measures included duration of hospitalization, time for bone union and soft tissue closure, Enneking score at 3, 6 and 12 months, the incidence of osteomyelitis and other complications. Results: A total of 164 patients were included in the study. Out of them 68% were treated with an orthoplastic approach, whereas 32% received a purely orthopedic treatment. All considered outcome measures showed to be improved by the orthoplastic approach, compared to the orthopaedic one: time for soft tissue closure (2 versus 25 weeks), duration of hospital stay (22 versus 55 days), time for bone union (6 versus 8.5 months) , number of additional operations (0.6 versus 1.2) and functional recovery of the limb at 12 months (27 versus 19, Enneking’s score). All results were statistically significant. Conclusion: The combined orthoplastic approach to the treatment of open tibia fractures, in particular for high grade injuries (Gustilo 3B), is proven to improve the outcome of these severe injuries.