2 resultados para Oribatid mite

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genetic control of flowering time has been addressed by many quantitative trait locus (QTL) studies. A survey of the results from 29 independent studies reporting information on 441 QTLs led to the production of a QTL consensus map, which enabled the identification of 59 chromosome regions distributed on all chromosomes and shown to be frequently involved in the genetic control of flowering time and related traits. One of the major QTLs for flowering time, the Vegetative to generative transition 1 (Vgt1) locus , corresponds to an upstream (70 kb) non-coding regulatory element of ZmRap2.7, a repressor of flowering. A transposon (MITE) insertion was identified as a major allelic difference within Vgt1. One of the hypotheses is that Vgt1 might function by modifying ZmRap2.7 chromatin through an epigenetic mechanism. Therefore, the methylation state at Vgt1 was investigated using an approach that combines digestion with McrBc, an endonuclease that acts upon methylated DNA, and quantitative PCR. The analyses were performed on genomic DNA from leaves of six different maize lines at four stages of development. The results showed a trend of reduction of methylation from the first to the last stage with the exception of a short genomic region flanking the MITE insertion, which showed a constant and very dense methylation throughout leaf development and for both alleles. Preliminary results from bisulfite sequencing of a small portion of Vgt1 revealed differential methylation of a single cytosine residue between the two alleles. ZmRap2.7 expression was assayed in the four developmental stages afore mentioned for the six genotypes, in order to establish a link between methylation at Vgt1 and ZmRap2.7 transcription. To assess the role of Vgt1 as a transcriptional enhancer, two reporter vectors for stable transformation of plants have been developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite current evidence is in strong disagreement with an emergency for the conservation of Apis mellifera, great concern is related to profitability of beekeeping operations. A growing involvement of veterinary science in addressing bee health topics will therefore be fundamental to preserve and protect the entire sector. The experiments in this thesis focused on two different and interdependent levels related to bee health: the biochemical level and the parasitological level. At the biochemical level the impact of plant protection products on bee physiology and survival was studied, elucidating synergistic interactions between poor nutrition and pesticide exposure in A. mellifera and between an insecticide and a fungicide in Osmia bicornis. Moreover, an innovative fingerprinting approach on honey bee haemolymph was applied to detect population imbalances in the hive. The control of Varroa infestations was studied both at the biochemical and parasitological level. A panel of biomarkers in honey bee haemolymph was applied to compare different mite control protocols. This resulted in relevant indications for beekeeping operations pursuing the least impact on nutritional status of the colonies. To guide the decision making of beekeepers, a new formic acid evaporator was tested in comparison with a more established one. Considering its widespread distribution in the country, efforts were directed also towards N. ceranae. In particular, the pivotal aspect of diagnosis was studied, proposing a new qPCR method to overcome some limits of the existing ones. In conclusion, this works fills some of the knowledge gaps of the beekeeping sector. However, many of them still need to be addressed and the upcoming menaces of climate change and dispersal of pathogens via globalization should be targeted by research efforts in the near future. Therefore, a multifaceted vision of bee health is of capital importance, aware of the complementarity of reductionist and holistic approaches.