12 resultados para Ordinary Differential Equations and Applied Dynamics

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis I show a triple new connection we found between quantum integrability, N=2 supersymmetric gauge theories and black holes perturbation theory. I use the approach of the ODE/IM correspondence between Ordinary Differential Equations (ODE) and Integrable Models (IM), first to connect basic integrability functions - the Baxter’s Q, T and Y functions - to the gauge theory periods. This fundamental identification allows several new results for both theories, for example: an exact non linear integral equation (Thermodynamic Bethe Ansatz, TBA) for the gauge periods; an interpretation of the integrability functional relations as new exact R-symmetry relations for the periods; new formulas for the local integrals of motion in terms of gauge periods. This I develop in all details at least for the SU(2) gauge theory with Nf=0,1,2 matter flavours. Still through to the ODE/IM correspondence, I connect the mathematically precise definition of quasinormal modes of black holes (having an important role in gravitational waves’ obervations) with quantization conditions on the Q, Y functions. In this way I also give a mathematical explanation of the recently found connection between quasinormal modes and N=2 supersymmetric gauge theories. Moreover, it follows a new simple and effective method to numerically compute the quasinormal modes - the TBA - which I compare with other standard methods. The spacetimes for which I show these in all details are in the simplest Nf=0 case the D3 brane in the Nf=1,2 case a generalization of extremal Reissner-Nordström (charged) black holes. Then I begin treating also the Nf=3,4 theories and argue on how our integrability-gauge-gravity correspondence can generalize to other types of black holes in either asymptotically flat (Nf=3) or Anti-de-Sitter (Nf=4) spacetime. Finally I begin to show the extension to a 4-fold correspondence with also Conformal Field Theory (CFT), through the renowned AdS/CFT correspondence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this thesis is to detect the phylogeny and the population dynamics of the European termites of the genera Reticulitermes and Kalotermes, by the use of different mitochondrial (16S, COI/tRNA/COII, CR) and nuclear (microsatellites and Inter-SINE) molecular markers. In the phylogenetic analyses, the obtained results have well defined the cladogenetic events that generated the nowadays species biodiversity of the genus Reticulitermes, while the analysis of the Kalotermes flavicollis taxon showed the presence of at least four genetic clades, defined on the basis of the geographical distance. The second part of the thesis is centred on the population dynamics of two species: Reticulitermes urbis and Kalotermes flavicollis. The first species, native of the Balkans, is known to be present in some cities of Italy and France. I’ve analyzed the colony genetic structure of the introduced population of Bagnacavallo (RA, Italy), using nine microsatellite loci. The obtained results are in accordance with those obtained from another population in France: this species in fact confirms its invasive and infestation capacities. The analysis of the natural population of K. flavicollis, performed with a combination of mitochondrial (control region) and nuclear (microsatellites and I-SINE) markers, clearly evidenced the presence of two genetic lineages that coexist in the same area. Moreover, results clearly indicate that the cross-breeding is allowed. Finally, the whole results are discussed in a comparative view to better understand the differences in ecology, evolutionary dynamics and colony social structure between these two genera.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis deals with the study of optimal control problems for the incompressible Magnetohydrodynamics (MHD) equations. Particular attention to these problems arises from several applications in science and engineering, such as fission nuclear reactors with liquid metal coolant and aluminum casting in metallurgy. In such applications it is of great interest to achieve the control on the fluid state variables through the action of the magnetic Lorentz force. In this thesis we investigate a class of boundary optimal control problems, in which the flow is controlled through the boundary conditions of the magnetic field. Due to their complexity, these problems present various challenges in the definition of an adequate solution approach, both from a theoretical and from a computational point of view. In this thesis we propose a new boundary control approach, based on lifting functions of the boundary conditions, which yields both theoretical and numerical advantages. With the introduction of lifting functions, boundary control problems can be formulated as extended distributed problems. We consider a systematic mathematical formulation of these problems in terms of the minimization of a cost functional constrained by the MHD equations. The existence of a solution to the flow equations and to the optimal control problem are shown. The Lagrange multiplier technique is used to derive an optimality system from which candidate solutions for the control problem can be obtained. In order to achieve the numerical solution of this system, a finite element approximation is considered for the discretization together with an appropriate gradient-type algorithm. A finite element object-oriented library has been developed to obtain a parallel and multigrid computational implementation of the optimality system based on a multiphysics approach. Numerical results of two- and three-dimensional computations show that a possible minimum for the control problem can be computed in a robust and accurate manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of soil incorporation of 7 Meliaceae derivatives (6 commercial neem cakes and leaves of Melia azedarach L.) on C and N dynamics and on nutrient availability to micropropagated GF677 rootstock was investigated. In a first laboratory incubation experiment the derivatives showed different N mineralization dynamics, generally well predicted by their C:N ratio and only partly by their initial N concentration. All derivatives increased microbial biomass C, thus representing a source of C for the soil microbial population. Soil addition of all neem cakes (8 g kg-1) and melia leaves (16 g kg-1) had a positive effect on plant growth and increased root N uptake and leaf green colour of micropropagated plants of GF677. In addition, the neem cakes characterized by higher nutrient concentration increased P and K concentration in shoot and leaves 68 days after the amendment. In another experiment, soil incorporation of 15N labeled melia leaves (16 g kg-1) had no effect on the total amount of plant N, however the percentage of melia derived-N of treated plants ranged between 0.8% and 34% during the experiment. At the end of the growing season, about 7% of N added as melia leaves was recovered in plant, while 70% of it was still present in soil. Real C mineralization and the priming effect induced by the addition of the derivatives were quantified by a natural 13C abundance method. The real C mineralization of the derivatives ranged between 22% and 40% of added-C. All the derivatives studied induced a positive priming effect and, 144 days after the amendment, the amount of C primed corresponded to 26% of added-C, for all the derivatives. Despite this substantial priming effect, the C balance of the soil, 144 days after the amendment, always resulted positive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early-Type galaxies (ETGs) are embedded in hot (10^6-10^7 K), X-ray emitting gaseous haloes, produced mainly by stellar winds and heated by Type Ia supernovae explosions, by the thermalization of stellar motions and occasionally by the central super-massive black hole (SMBH). In particular, the thermalization of the stellar motions is due to the interaction between the stellar and the SNIa ejecta and the hot interstellar medium (ISM) already residing in the ETG. A number of different astrophysical phenomena determine the X-ray properties of the hot ISM, such as stellar population formation and evolution, galaxy structure and internal kinematics, Active Galactic Nuclei (AGN) presence, and environmental effects. With the aid of high-resolution hydrodynamical simulations performed on state-of-the-art galaxy models, in this Thesis we focus on the effects of galaxy shape, stellar kinematics and star formation on the evolution of the X-ray coronae of ETGs. Numerical simulations show that the relative importance of flattening and rotation are functions of the galaxy mass: at low galaxy masses, adding flattening and rotation induces a galactic wind, thus lowering the X-ray luminosity; at high galaxy masses the angular momentum conservation keeps the central regions of rotating galaxies at low density, whereas in non-rotating models a denser and brighter atmosphere is formed. The same dependence from the galaxy mass is present in the effects of star formation (SF): in light galaxies SF contributes to increase the spread in Lx, while at high galaxy masses the halo X-ray properties are marginally sensitive to SF effects. In every case, the star formation rate at the present epoch quite agrees with observations, and the massive, cold gaseous discs are partially or completely consumed by SF on a time-scale of few Gyr, excluding the presence of young stellar discs at the present epoch.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the first part of the thesis, we propose an exactly-solvable one-dimensional model for fermions with long-range p-wave pairing decaying with distance as a power law. We studied the phase diagram by analyzing the critical lines, the decay of correlation functions and the scaling of the von Neumann entropy with the system size. We found two gapped regimes, where correlation functions decay (i) exponentially at short range and algebraically at long range, (ii) purely algebraically. In the latter the entanglement entropy is found to diverge logarithmically. Most interestingly, along the critical lines, long-range pairing breaks also the conformal symmetry. This can be detected via the dynamics of entanglement following a quench. In the second part of the thesis we studied the evolution in time of the entanglement entropy for the Ising model in a transverse field varying linearly in time with different velocities. We found different regimes: an adiabatic one (small velocities) when the system evolves according the instantaneous ground state; a sudden quench (large velocities) when the system is essentially frozen to its initial state; and an intermediate one, where the entropy starts growing linearly but then displays oscillations (also as a function of the velocity). Finally, we discussed the Kibble-Zurek mechanism for the transition between the paramagnetic and the ordered phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the digital age, e-health technologies play a pivotal role in the processing of medical information. As personal health data represents sensitive information concerning a data subject, enhancing data protection and security of systems and practices has become a primary concern. In recent years, there has been an increasing interest in the concept of Privacy by Design, which aims at developing a product or a service in a way that it supports privacy principles and rules. In the EU, Article 25 of the General Data Protection Regulation provides a binding obligation of implementing Data Protection by Design technical and organisational measures. This thesis explores how an e-health system could be developed and how data processing activities could be carried out to apply data protection principles and requirements from the design stage. The research attempts to bridge the gap between the legal and technical disciplines on DPbD by providing a set of guidelines for the implementation of the principle. The work is based on literature review, legal and comparative analysis, and investigation of the existing technical solutions and engineering methodologies. The work can be differentiated by theoretical and applied perspectives. First, it critically conducts a legal analysis on the principle of PbD and it studies the DPbD legal obligation and the related provisions. Later, the research contextualises the rule in the health care field by investigating the applicable legal framework for personal health data processing. Moreover, the research focuses on the US legal system by conducting a comparative analysis. Adopting an applied perspective, the research investigates the existing technical methodologies and tools to design data protection and it proposes a set of comprehensive DPbD organisational and technical guidelines for a crucial case study, that is an Electronic Health Record system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smart Farming Technologies (SFT) is a term used to define the set of digital technologies able not only to control and manage the farm system, but also to connect it to the many disruptive digital applications posed at multiple links along the value chain. The adoption of SFT has been so far limited, with significant differences at country-levels and among different types of farms and farmers. The objective of this thesis is to analyze what factors contributes to shape the agricultural digital transition and to assess its potential impacts in the Italian agri-food system. Specifically, this overall research objective is approached under three different perspectives. Firstly, we carry out a review of the literature that focuses on the determinants of adoption of farm-level Management Information Systems (MIS), namely the most adopted smart farming solutions in Italy. Secondly, we run an empirical analysis on what factors are currently shaping the adoption of SFT in Italy. In doing so, we focus on the multi-process and multi-faceted aspects of the adoption, by overcoming the one-off binary approach often used to study adoption decisions. Finally, we adopt a forward-looking perspective to investigate what the socio-ethical implications of a diffused use of SFT might be. On the one hand, our results indicate that bigger, more structured farms with higher levels of commercial integration along the agri-food supply chain are those more likely to be early adopters. On the other hand, they highlight the need for the institutional and organizational environment around farms to more effectively support farmers in the digital transition. Moreover, the role of several other actors and actions are discussed and analyzed, by highlighting the key role of specific agri-food stakeholders and ad-hoc policies, with the aim to propose a clearer path towards an efficient, fair and inclusive digitalization of the agrifood sector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On November 16, 2022, the NASA’s Space Launch System (SLS) has been launched for the first time in the context of Artemis-1 mission where, together with the Orion Multi-Purpose Crew Vehicle, a set of 10 CubeSats have been delivered into a translunar trajectory. Among the small satellites deployed during Artemis-1 there is ArgoMoon, a 6U CubeSat built by the Italian company Argotec and coordinated by Italian Space Agency (ASI). The primary goal of ArgoMoon is to capture images of the Interim Cryogenic Propulsion Stage. The ArgoMoon trajectory has been designed as a highly elliptical geocentric orbit, with several encounters with the Moon. In order to successfully fly ArgoMoon along the designed cis-lunar trajectory, a ground-based navigation system has been developed exploiting the guidance techniques also used for regular deep space missions. The navigation process is subdivided into Orbit Determi- nation (OD) and a Flight Path Control (FPC), and it is designed to follow the reference trajectory, prevent impacts with the Earth and the Moon, intensively test the navigation techniques, and guarantee the spacecraft disposal at the end of the mission. The work done in this thesis has accomplished the navigation of ArgoMoon, covering all aspects of the project life, from pre-launch design and analysis to actual operations. Firstly, the designed navigation process and the pre-mission assessment of its performance will be presented. Then, the results of the ArgoMoon navigation operations performed after the launch in November 2022 will be described in detail by discussing the main encountered challenges and the adopted solutions. The results of the operations confirmed the robustness of the designed navigation which allowed to accurately estimate the trajectory of ArgoMoon despite a series of complex events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the years the Differential Quadrature (DQ) method has distinguished because of its high accuracy, straightforward implementation and general ap- plication to a variety of problems. There has been an increase in this topic by several researchers who experienced significant development in the last years. DQ is essentially a generalization of the popular Gaussian Quadrature (GQ) used for numerical integration functions. GQ approximates a finite in- tegral as a weighted sum of integrand values at selected points in a problem domain whereas DQ approximate the derivatives of a smooth function at a point as a weighted sum of function values at selected nodes. A direct appli- cation of this elegant methodology is to solve ordinary and partial differential equations. Furthermore in recent years the DQ formulation has been gener- alized in the weighting coefficients computations to let the approach to be more flexible and accurate. As a result it has been indicated as Generalized Differential Quadrature (GDQ) method. However the applicability of GDQ in its original form is still limited. It has been proven to fail for problems with strong material discontinuities as well as problems involving singularities and irregularities. On the other hand the very well-known Finite Element (FE) method could overcome these issues because it subdivides the computational domain into a certain number of elements in which the solution is calculated. Recently, some researchers have been studying a numerical technique which could use the advantages of the GDQ method and the advantages of FE method. This methodology has got different names among each research group, it will be indicated here as Generalized Differential Quadrature Finite Element Method (GDQFEM).