10 resultados para Optimization of Water Resources Management and Control

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Logistics involves planning, managing, and organizing the flows of goods from the point of origin to the point of destination in order to meet some requirements. Logistics and transportation aspects are very important and represent a relevant costs for producing and shipping companies, but also for public administration and private citizens. The optimization of resources and the improvement in the organization of operations is crucial for all branches of logistics, from the operation management to the transportation. As we will have the chance to see in this work, optimization techniques, models, and algorithms represent important methods to solve the always new and more complex problems arising in different segments of logistics. Many operation management and transportation problems are related to the optimization class of problems called Vehicle Routing Problems (VRPs). In this work, we consider several real-world deterministic and stochastic problems that are included in the wide class of the VRPs, and we solve them by means of exact and heuristic methods. We treat three classes of real-world routing and logistics problems. We deal with one of the most important tactical problems that arises in the managing of the bike sharing systems, that is the Bike sharing Rebalancing Problem (BRP). We propose models and algorithms for real-world earthwork optimization problems. We describe the 3DP process and we highlight several optimization issues in 3DP. Among those, we define the problem related to the tool path definition in the 3DP process, the 3D Routing Problem (3DRP), which is a generalization of the arc routing problem. We present an ILP model and several heuristic algorithms to solve the 3DRP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decades the automotive sector has seen a technological revolution, due mainly to the more restrictive regulation, the newly introduced technologies and, as last, to the poor resources of fossil fuels remaining on Earth. Promising solution in vehicles’ propulsion are represented by alternative architectures and energy sources, for example fuel-cells and pure electric vehicles. The automotive transition to new and green vehicles is passing through the development of hybrid vehicles, that usually combine positive aspects of each technology. To fully exploit the powerful of hybrid vehicles, however, it is important to manage the powertrain’s degrees of freedom in the smartest way possible, otherwise hybridization would be worthless. To this aim, this dissertation is focused on the development of energy management strategies and predictive control functions. Such algorithms have the goal of increasing the powertrain overall efficiency and contextually increasing the driver safety. Such control algorithms have been applied to an axle-split Plug-in Hybrid Electric Vehicle with a complex architecture that allows more than one driving modes, including the pure electric one. The different energy management strategies investigated are mainly three: the vehicle baseline heuristic controller, in the following mentioned as rule-based controller, a sub-optimal controller that can include also predictive functionalities, referred to as Equivalent Consumption Minimization Strategy, and a vehicle global optimum control technique, called Dynamic Programming, also including the high-voltage battery thermal management. During this project, different modelling approaches have been applied to the powertrain, including Hardware-in-the-loop, and diverse powertrain high-level controllers have been developed and implemented, increasing at each step their complexity. It has been proven the potential of using sophisticated powertrain control techniques, and that the gainable benefits in terms of fuel economy are largely influenced by the chose energy management strategy, even considering the powerful vehicle investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geochemical mapping is a valuable tool for the control of territory that can be used not only in the identification of mineral resources and geological, agricultural and forestry studies but also in the monitoring of natural resources by giving solutions to environmental and economic problems. Stream sediments are widely used in the sampling campaigns carried out by the world's governments and research groups for their characteristics of broad representativeness of rocks and soils, for ease of sampling and for the possibility to conduct very detailed sampling In this context, the environmental role of stream sediments provides a good basis for the implementation of environmental management measures, in fact the composition of river sediments is an important factor in understanding the complex dynamics that develop within catchment basins therefore they represent a critical environmental compartment: they can persistently incorporate pollutants after a process of contamination and release into the biosphere if the environmental conditions change. It is essential to determine whether the concentrations of certain elements, in particular heavy metals, can be the result of natural erosion of rocks containing high concentrations of specific elements or are generated as residues of human activities related to a certain study area. This PhD thesis aims to extract from an extensive database on stream sediments of the Romagna rivers the widest spectrum of informations. The study involved low and high order stream in the mountain and hilly area, but also the sediments of the floodplain area, where intensive agriculture is active. The geochemical signals recorded by the stream sediments will be interpreted in order to reconstruct the natural variability related to bedrock and soil contribution, the effects of the river dynamics, the anomalous sites, and with the calculation of background values be able to evaluate their level of degradation and predict the environmental risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This manuscript reports the overall development of a Ph.D. research project during the “Mechanics and advanced engineering sciences” course at the Department of Industrial Engineering of the University of Bologna. The project is focused on the development of a combustion control system for an innovative Spark Ignited engine layout. In details, the controller is oriented to manage a prototypal engine equipped with a Port Water Injection system. The water injection technology allows an increment of combustion efficiency due to the knock mitigation effect that permits to keep the combustion phasing closer to the optimal position with respect to the traditional layout. At the beginning of the project, the effects and the possible benefits achievable by water injection have been investigated by a focused experimental campaign. Then the data obtained by combustion analysis have been processed to design a control-oriented combustion model. The model identifies the correlation between Spark Advance, combustion phasing and injected water mass, and two different strategies are presented, both based on an analytic and semi-empirical approach and therefore compatible with a real-time application. The model has been implemented in a combustion controller that manages water injection to reach the best achievable combustion efficiency while keeping knock levels under a pre-established threshold. Three different versions of the algorithm are described in detail. This controller has been designed and pre-calibrated in a software-in-the-loop environment and later an experimental validation has been performed with a rapid control prototyping approach to highlight the performance of the system on real set-up. To further make the strategy implementable on an onboard application, an estimation algorithm of combustion phasing, necessary for the controller, has been developed during the last phase of the PhD Course, based on accelerometric signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water Distribution Networks (WDNs) play a vital importance rule in communities, ensuring well-being band supporting economic growth and productivity. The need for greater investment requires design choices will impact on the efficiency of management in the coming decades. This thesis proposes an algorithmic approach to address two related problems:(i) identify the fundamental asset of large WDNs in terms of main infrastructure;(ii) sectorize large WDNs into isolated sectors in order to respect the minimum service to be guaranteed to users. Two methodologies have been developed to meet these objectives and subsequently they were integrated to guarantee an overall process which allows to optimize the sectorized configuration of WDN taking into account the needs to integrated in a global vision the two problems (i) and (ii). With regards to the problem (i), the methodology developed introduces the concept of primary network to give an answer with a dual approach, of connecting main nodes of WDN in terms of hydraulic infrastructures (reservoirs, tanks, pumps stations) and identifying hypothetical paths with the minimal energy losses. This primary network thus identified can be used as an initial basis to design the sectors. The sectorization problem (ii) has been faced using optimization techniques by the development of a new dedicated Tabu Search algorithm able to deal with real case studies of WDNs. For this reason, three new large WDNs models have been developed in order to test the capabilities of the algorithm on different and complex real cases. The developed methodology also allows to automatically identify the deficient parts of the primary network and dynamically includes new edges in order to support a sectorized configuration of the WDN. The application of the overall algorithm to the new real case studies and to others from literature has given applicable solutions even in specific complex situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development aid involves a complex network of numerous and extremely heterogeneous actors. Nevertheless, all actors seem to speak the same ‘development jargon’ and to display a congruence that extends from the donor over the professional consultant to the village chief. And although the ideas about what counts as ‘good’ and ‘bad’ aid have constantly changed over time —with new paradigms and policies sprouting every few years— the apparent congruence between actors more or less remains unchanged. How can this be explained? Is it a strategy of all actors to get into the pocket of the donor, or are the social dynamics in development aid more complex? When a new development paradigm appears, where does it come from and how does it gain support? Is this support really homogeneous? To answer the questions, a multi-sited ethnography was conducted in the sector of water-related development aid, with a focus on 3 paradigms that are currently hegemonic in this sector: Integrated Water Resources Management, Capacity Building, and Adaptation to Climate Change. The sites of inquiry were: the headquarters of a multilateral organization, the headquarters of a development NGO, and the Inner Niger Delta in Mali. The research shows that paradigm shifts do not happen overnight but that new paradigms have long lines of descent. Moreover, they require a lot of work from actors in order to become hegemonic; the actors need to create a tight network of support. Each actor, however, interprets the paradigms in a slightly different way, depending on the position in the network. They implant their own interests in their interpretation of the paradigm (the actors ‘translate’ their interests), regardless of whether they constitute the donor, a mediator, or the aid recipient. These translations are necessary to cement and reproduce the network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents some different techniques designed to drive a swarm of robots in an a-priori unknown environment in order to move the group from a starting area to a final one avoiding obstacles. The presented techniques are based on two different theories used alone or in combination: Swarm Intelligence (SI) and Graph Theory. Both theories are based on the study of interactions between different entities (also called agents or units) in Multi- Agent Systems (MAS). The first one belongs to the Artificial Intelligence context and the second one to the Distributed Systems context. These theories, each one from its own point of view, exploit the emergent behaviour that comes from the interactive work of the entities, in order to achieve a common goal. The features of flexibility and adaptability of the swarm have been exploited with the aim to overcome and to minimize difficulties and problems that can affect one or more units of the group, having minimal impact to the whole group and to the common main target. Another aim of this work is to show the importance of the information shared between the units of the group, such as the communication topology, because it helps to maintain the environmental information, detected by each single agent, updated among the swarm. Swarm Intelligence has been applied to the presented technique, through the Particle Swarm Optimization algorithm (PSO), taking advantage of its features as a navigation system. The Graph Theory has been applied by exploiting Consensus and the application of the agreement protocol with the aim to maintain the units in a desired and controlled formation. This approach has been followed in order to conserve the power of PSO and to control part of its random behaviour with a distributed control algorithm like Consensus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decades, global food supply chains had to deal with the increasing awareness of the stakeholders and consumers about safety, quality, and sustainability. In order to address these new challenges for food supply chain systems, an integrated approach to design, control, and optimize product life cycle is required. Therefore, it is essential to introduce new models, methods, and decision-support platforms tailored to perishable products. This thesis aims to provide novel practice-ready decision-support models and methods to optimize the logistics of food items with an integrated and interdisciplinary approach. It proposes a comprehensive review of the main peculiarities of perishable products and the environmental stresses accelerating their quality decay. Then, it focuses on top-down strategies to optimize the supply chain system from the strategical to the operational decision level. Based on the criticality of the environmental conditions, the dissertation evaluates the main long-term logistics investment strategies to preserve products quality. Several models and methods are proposed to optimize the logistics decisions to enhance the sustainability of the supply chain system while guaranteeing adequate food preservation. The models and methods proposed in this dissertation promote a climate-driven approach integrating climate conditions and their consequences on the quality decay of products in innovative models supporting the logistics decisions. Given the uncertain nature of the environmental stresses affecting the product life cycle, an original stochastic model and solving method are proposed to support practitioners in controlling and optimizing the supply chain systems when facing uncertain scenarios. The application of the proposed decision-support methods to real case studies proved their effectiveness in increasing the sustainability of the perishable product life cycle. The dissertation also presents an industry application of a global food supply chain system, further demonstrating how the proposed models and tools can be integrated to provide significant savings and sustainability improvements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis work deals with topics that led to the development of innovative control-oriented models and control algorithms for modern gasoline engines. Knock in boosted spark ignition engines is the widest topic discussed in this document because it remains one of the most limiting factors for maximizing combustion efficiency in this kind of engine. First chapter is thus focused on knock and a wide literature review is proposed to summarize the preliminary knowledge that even represents the background and the reference for discussed activities. Most relevant results achieved during PhD course in the field of knock modelling and control are then presented, describing every control-oriented model that led to the development of an adaptive model-based combustion control system. The complete controller has been developed in the context of the collaboration with Ferrari GT and it allowed to completely redefine the knock intensity evaluation as well as the combustion phase control. The second chapter is focused on the activity related to a prototyping Port Water Injection system that has been developed and tested on a turbocharged spark ignition engine, within the collaboration with Magneti Marelli. Such system and the effects of injected water on the combustion process were then modeled in a 1-D simulation environment (GT Power). Third chapter shows the development and validation of a control-oriented model for the real-time calculation of exhaust gas temperature that represents another important limitation to the performance increase in modern boosted engines. Indeed, modelling of exhaust gas temperature and thermocouple behavior are themes that play a key role in the optimization of combustion and catalyst efficiency.