20 resultados para Optical tracking systems
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
During the last decade advances in the field of sensor design and improved base materials have pushed the radiation hardness of the current silicon detector technology to impressive performance. It should allow operation of the tracking systems of the Large Hadron Collider (LHC) experiments at nominal luminosity (1034 cm-2s-1) for about 10 years. The current silicon detectors are unable to cope with such an environment. Silicon carbide (SiC), which has recently been recognized as potentially radiation hard, is now studied. In this work it was analyzed the effect of high energy neutron irradiation on 4H-SiC particle detectors. Schottky and junction particle detectors were irradiated with 1 MeV neutrons up to fluence of 1016 cm-2. It is well known that the degradation of the detectors with irradiation, independently of the structure used for their realization, is caused by lattice defects, like creation of point-like defect, dopant deactivation and dead layer formation and that a crucial aspect for the understanding of the defect kinetics at a microscopic level is the correct identification of the crystal defects in terms of their electrical activity. In order to clarify the defect kinetic it were carried out a thermal transient spectroscopy (DLTS and PICTS) analysis of different samples irradiated at increasing fluences. The defect evolution was correlated with the transport properties of the irradiated detector, always comparing with the un-irradiated one. The charge collection efficiency degradation of Schottky detectors induced by neutron irradiation was related to the increasing concentration of defects as function of the neutron fluence.
Resumo:
This thesis proposes design methods and test tools, for optical systems, which may be used in an industrial environment, where not only precision and reliability but also ease of use is important. The approach to the problem has been conceived to be as general as possible, although in the present work, the design of a portable device for automatic identification applications has been studied, because this doctorate has been funded by Datalogic Scanning Group s.r.l., a world-class producer of barcode readers. The main functional components of the complete device are: electro-optical imaging, illumination and pattern generator systems. For what concerns the electro-optical imaging system, a characterization tool and an analysis one has been developed to check if the desired performance of the system has been achieved. Moreover, two design tools for optimizing the imaging system have been implemented. The first optimizes just the core of the system, the optical part, improving its performance ignoring all other contributions and generating a good starting point for the optimization of the whole complex system. The second tool optimizes the system taking into account its behavior with a model as near as possible to reality including optics, electronics and detection. For what concerns the illumination and the pattern generator systems, two tools have been implemented. The first allows the design of free-form lenses described by an arbitrary analytical function exited by an incoherent source and is able to provide custom illumination conditions for all kind of applications. The second tool consists of a new method to design Diffractive Optical Elements excited by a coherent source for large pattern angles using the Iterative Fourier Transform Algorithm. Validation of the design tools has been obtained, whenever possible, comparing the performance of the designed systems with those of fabricated prototypes. In other cases simulations have been used.
Resumo:
With the increasing importance that nanotechnologies have in everyday life, it is not difficult to realize that also a single molecule, if properly designed, can be a device able to perform useful functions: such a chemical species is called chemosensor, that is a molecule of abiotic origin that signals the presence of matter or energy. Signal transduction is the mechanism by which an interaction of a sensor with an analyte yields a measurable form of energy. When dealing with the design of a chemosensor, we need to take into account a “communication requirement” between its three component: the receptor unit, responsible for the selective analyte binding, the spacer, which controls the geometry of the system and modulates the electronic interaction between the receptor and the signalling unit, whose physico-chemical properties change upon complexation. A luminescent chemosensor communicates a variation of the physico-chemical properties of the receptor unit with a luminescence output signal. This thesis work consists in the characterization of new molecular and nanoparticle-based system which can be used as sensitive materials for the construction of new optical transduction devices able to provide information about the concentration of analytes in solution. In particular two direction were taken. The first is to continue in the development of new chemosensors, that is the first step for the construction of reliable and efficient devices, and in particular the work will be focused on chemosensors for metal ions for biomedical and environmental applications. The second is to study more efficient and complex organized systems, such as derivatized silica nanoparticles. These system can potentially have higher sensitivity than molecular systems, and present many advantages, like the possibility to be ratiometric, higher Stokes shifts and lower signal-to-noise ratio.
Resumo:
This dissertation deals with the design and the characterization of novel reconfigurable silicon-on-insulator (SOI) devices to filter and route optical signals on-chip. Design is carried out through circuit simulations based on basic circuit elements (Building Blocks, BBs) in order to prove the feasibility of an approach allowing to move the design of Photonic Integrated Circuits (PICs) toward the system level. CMOS compatibility and large integration scale make SOI one of the most promising material to realize PICs. The concepts of generic foundry and BB based circuit simulations for the design are emerging as a solution to reduce the costs and increase the circuit complexity. To validate the BB based approach, the development of some of the most important BBs is performed first. A novel tunable coupler is also presented and it is demonstrated to be a valuable alternative to the known solutions. Two novel multi-element PICs are then analysed: a narrow linewidth single mode resonator and a passband filter with widely tunable bandwidth. Extensive circuit simulations are carried out to determine their performance, taking into account fabrication tolerances. The first PIC is based on two Grating Assisted Couplers in a ring resonator (RR) configuration. It is shown that a trade-off between performance, resonance bandwidth and device footprint has to be performed. The device could be employed to realize reconfigurable add-drop de/multiplexers. Sensitivity with respect to fabrication tolerances and spurious effects is however observed. The second PIC is based on an unbalanced Mach-Zehnder interferometer loaded with two RRs. Overall good performance and robustness to fabrication tolerances and nonlinear effects have confirmed its applicability for the realization of flexible optical systems. Simulated and measured devices behaviour is shown to be in agreement thus demonstrating the viability of a BB based approach to the design of complex PICs.
Resumo:
The Deep Underground Neutrino Experiment (DUNE) is a long-baseline accelerator experiment designed to make a significant contribution to the study of neutrino oscillations with unprecedented sensitivity. The main goal of DUNE is the determination of the neutrino mass ordering and the leptonic CP violation phase, key parameters of the three-neutrino flavor mixing that have yet to be determined. An important component of the DUNE Near Detector complex is the System for on-Axis Neutrino Detection (SAND) apparatus, which will include GRAIN (GRanular Argon for Interactions of Neutrinos), a novel liquid Argon detector aimed at imaging neutrino interactions using only scintillation light. For this purpose, an innovative optical readout system based on Coded Aperture Masks is investigated. This dissertation aims to demonstrate the feasibility of reconstructing particle tracks and the topology of CCQE (Charged Current Quasi Elastic) neutrino events in GRAIN with such a technique. To this end, the development and implementation of a reconstruction algorithm based on Maximum Likelihood Expectation Maximization was carried out to directly obtain a three-dimensional distribution proportional to the energy deposited by charged particles crossing the LAr volume. This study includes the evaluation of the design of several camera configurations and the simulation of a multi-camera optical system in GRAIN.
Resumo:
The need for high bandwidth, due to the explosion of new multi\-media-oriented IP-based services, as well as increasing broadband access requirements is leading to the need of flexible and highly reconfigurable optical networks. While transmission bandwidth does not represent a limit due to the huge bandwidth provided by optical fibers and Dense Wavelength Division Multiplexing (DWDM) technology, the electronic switching nodes in the core of the network represent the bottleneck in terms of speed and capacity for the overall network. For this reason DWDM technology must be exploited not only for data transport but also for switching operations. In this Ph.D. thesis solutions for photonic packet switches, a flexible alternative with respect to circuit-switched optical networks are proposed. In particular solutions based on devices and components that are expected to mature in the near future are proposed, with the aim to limit the employment of complex components. The work presented here is the result of part of the research activities performed by the Networks Research Group at the Department of Electronics, Computer Science and Systems (DEIS) of the University of Bologna, Italy. In particular, the work on optical packet switching has been carried on within three relevant research projects: the e-Photon/ONe and e-Photon/ONe+ projects, funded by the European Union in the Sixth Framework Programme, and the national project OSATE funded by the Italian Ministry of Education, University and Scientific Research. The rest of the work is organized as follows. Chapter 1 gives a brief introduction to network context and contention resolution in photonic packet switches. Chapter 2 presents different strategies for contention resolution in wavelength domain. Chapter 3 illustrates a possible implementation of one of the schemes proposed in chapter 2. Then, chapter 4 presents multi-fiber switches, which employ jointly wavelength and space domains to solve contention. Chapter 5 shows buffered switches, to solve contention in time domain besides wavelength domain. Finally chapter 6 presents a cost model to compare different switch architectures in terms of cost.
Resumo:
In case of severe osteoarthritis at the knee causing pain, deformity, and loss of stability and mobility, the clinicians consider that the substitution of these surfaces by means of joint prostheses. The objectives to be pursued by this surgery are: complete pain elimination, restoration of the normal physiological mobility and joint stability, correction of all deformities and, thus, of limping. The knee surgical navigation systems have bee developed in computer-aided surgery in order to improve the surgical final outcome in total knee arthroplasty. These systems provide the surgeon with quantitative and real-time information about each surgical action, like bone cut executions and prosthesis component alignment, by mean of tracking tools rigidly fixed onto the femur and the tibia. Nevertheless, there is still a margin of error due to the incorrect surgical procedures and to the still limited number of kinematic information provided by the current systems. Particularly, patello-femoral joint kinematics is not considered in knee surgical navigation. It is also unclear and, thus, a source of misunderstanding, what the most appropriate methodology is to study the patellar motion. In addition, also the knee ligamentous apparatus is superficially considered in navigated total knee arthroplasty, without taking into account how their physiological behavior is altered by this surgery. The aim of the present research work was to provide new functional and biomechanical assessments for the improvement of the surgical navigation systems for joint replacement in the human lower limb. This was mainly realized by means of the identification and development of new techniques that allow a thorough comprehension of the functioning of the knee joint, with particular attention to the patello-femoral joint and to the main knee soft tissues. A knee surgical navigation system with active markers was used in all research activities presented in this research work. Particularly, preliminary test were performed in order to assess the system accuracy and the robustness of a number of navigation procedures. Four studies were performed in-vivo on patients requiring total knee arthroplasty and randomly implanted by means of traditional and navigated procedures in order to check for the real efficacy of the latter with respect to the former. In order to cope with assessment of patello-femoral joint kinematics in the intact and replaced knees, twenty in-vitro tests were performed by using a prototypal tracking tool also for the patella. In addition to standard anatomical and articular recommendations, original proposals for defining the patellar anatomical-based reference frame and for studying the patello-femoral joint kinematics were reported and used in these tests. These definitions were applied to two further in-vitro tests in which, for the first time, also the implant of patellar component insert was fully navigated. In addition, an original technique to analyze the main knee soft tissues by means of anatomical-based fiber mappings was also reported and used in the same tests. The preliminary instrumental tests revealed a system accuracy within the millimeter and a good inter- and intra-observer repeatability in defining all anatomical reference frames. In in-vivo studies, the general alignments of femoral and tibial prosthesis components and of the lower limb mechanical axis, as measured on radiographs, was more satisfactory, i.e. within ±3°, in those patient in which total knee arthroplasty was performed by navigated procedures. As for in-vitro tests, consistent patello-femoral joint kinematic patterns were observed over specimens throughout the knee flexion arc. Generally, the physiological intact knee patellar motion was not restored after the implant. This restoration was successfully achieved in the two further tests where all component implants, included the patellar insert, were fully navigated, i.e. by means of intra-operative assessment of also patellar component positioning and general tibio-femoral and patello-femoral joint assessment. The tests for assessing the behavior of the main knee ligaments revealed the complexity of the latter and the different functional roles played by the several sub-bundles compounding each ligament. Also in this case, total knee arthroplasty altered the physiological behavior of these knee soft tissues. These results reveal in-vitro the relevance and the feasibility of the applications of new techniques for accurate knee soft tissues monitoring, patellar tracking assessment and navigated patellar resurfacing intra-operatively in the contest of the most modern operative techniques. This present research work gives a contribution to the much controversial knowledge on the normal and replaced of knee kinematics by testing the reported new methodologies. The consistence of these results provides fundamental information for the comprehension and improvements of knee orthopedic treatments. In the future, the reported new techniques can be safely applied in-vivo and also adopted in other joint replacements.
Resumo:
Ground-based Earth troposphere calibration systems play an important role in planetary exploration, especially to carry out radio science experiments aimed at the estimation of planetary gravity fields. In these experiments, the main observable is the spacecraft (S/C) range rate, measured from the Doppler shift of an electromagnetic wave transmitted from ground, received by the spacecraft and coherently retransmitted back to ground. If the solar corona and interplanetary plasma noise is already removed from Doppler data, the Earth troposphere remains one of the main error sources in tracking observables. Current Earth media calibration systems at NASA’s Deep Space Network (DSN) stations are based upon a combination of weather data and multidirectional, dual frequency GPS measurements acquired at each station complex. In order to support Cassini’s cruise radio science experiments, a new generation of media calibration systems were developed, driven by the need to achieve the goal of an end-to-end Allan deviation of the radio link in the order of 3×〖10〗^(-15) at 1000 s integration time. The future ESA’s Bepi Colombo mission to Mercury carries scientific instrumentation for radio science experiments (a Ka-band transponder and a three-axis accelerometer) which, in combination with the S/C telecommunication system (a X/X/Ka transponder) will provide the most advanced tracking system ever flown on an interplanetary probe. Current error budget for MORE (Mercury Orbiter Radioscience Experiment) allows the residual uncalibrated troposphere to contribute with a value of 8×〖10〗^(-15) to the two-way Allan deviation at 1000 s integration time. The current standard ESA/ESTRACK calibration system is based on a combination of surface meteorological measurements and mathematical algorithms, capable to reconstruct the Earth troposphere path delay, leaving an uncalibrated component of about 1-2% of the total delay. In order to satisfy the stringent MORE requirements, the short time-scale variations of the Earth troposphere water vapor content must be calibrated at ESA deep space antennas (DSA) with more precise and stable instruments (microwave radiometers). In parallel to this high performance instruments, ESA ground stations should be upgraded to media calibration systems at least capable to calibrate both troposphere path delay components (dry and wet) at sub-centimetre level, in order to reduce S/C navigation uncertainties. The natural choice is to provide a continuous troposphere calibration by processing GNSS data acquired at each complex by dual frequency receivers already installed for station location purposes. The work presented here outlines the troposphere calibration technique to support both Deep Space probe navigation and radio science experiments. After an introduction to deep space tracking techniques, observables and error sources, in Chapter 2 the troposphere path delay is widely investigated, reporting the estimation techniques and the state of the art of the ESA and NASA troposphere calibrations. Chapter 3 deals with an analysis of the status and the performances of the NASA Advanced Media Calibration (AMC) system referred to the Cassini data analysis. Chapter 4 describes the current release of a developed GNSS software (S/W) to estimate the troposphere calibration to be used for ESA S/C navigation purposes. During the development phase of the S/W a test campaign has been undertaken in order to evaluate the S/W performances. A description of the campaign and the main results are reported in Chapter 5. Chapter 6 presents a preliminary analysis of microwave radiometers to be used to support radio science experiments. The analysis has been carried out considering radiometric measurements of the ESA/ESTEC instruments installed in Cabauw (NL) and compared with the requirements of MORE. Finally, Chapter 7 summarizes the results obtained and defines some key technical aspects to be evaluated and taken into account for the development phase of future instrumentation.
Resumo:
Constraints are widely present in the flight control problems: actuators saturations or flight envelope limitations are only some examples of that. The ability of Model Predictive Control (MPC) of dealing with the constraints joined with the increased computational power of modern calculators makes this approach attractive also for fast dynamics systems such as agile air vehicles. This PhD thesis presents the results, achieved at the Aerospace Engineering Department of the University of Bologna in collaboration with the Dutch National Aerospace Laboratories (NLR), concerning the development of a model predictive control system for small scale rotorcraft UAS. Several different predictive architectures have been evaluated and tested by means of simulation, as a result of this analysis the most promising one has been used to implement three different control systems: a Stability and Control Augmentation System, a trajectory tracking and a path following system. The systems have been compared with a corresponding baseline controller and showed several advantages in terms of performance, stability and robustness.
Resumo:
This thesis presents the outcomes of my Ph.D. course in telecommunications engineering. The focus of my research has been on Global Navigation Satellite Systems (GNSS) and in particular on the design of aiding schemes operating both at position and physical level and the evaluation of their feasibility and advantages. Assistance techniques at the position level are considered to enhance receiver availability in challenging scenarios where satellite visibility is limited. Novel positioning techniques relying on peer-to-peer interaction and exchange of information are thus introduced. More specifically two different techniques are proposed: the Pseudorange Sharing Algorithm (PSA), based on the exchange of GNSS data, that allows to obtain coarse positioning where the user has scarce satellite visibility, and the Hybrid approach, which also permits to improve the accuracy of the positioning solution. At the physical level, aiding schemes are investigated to improve the receiver’s ability to synchronize with satellite signals. An innovative code acquisition strategy for dual-band receivers, the Cross-Band Aiding (CBA) technique, is introduced to speed-up initial synchronization by exploiting the exchange of time references between the two bands. In addition vector configurations for code tracking are analyzed and their feedback generation process thoroughly investigated.
Resumo:
This thesis deals with distributed control strategies for cooperative control of multi-robot systems. Specifically, distributed coordination strategies are presented for groups of mobile robots. The formation control problem is initially solved exploiting artificial potential fields. The purpose of the presented formation control algorithm is to drive a group of mobile robots to create a completely arbitrarily shaped formation. Robots are initially controlled to create a regular polygon formation. A bijective coordinate transformation is then exploited to extend the scope of this strategy, to obtain arbitrarily shaped formations. For this purpose, artificial potential fields are specifically designed, and robots are driven to follow their negative gradient. Artificial potential fields are then subsequently exploited to solve the coordinated path tracking problem, thus making the robots autonomously spread along predefined paths, and move along them in a coordinated way. Formation control problem is then solved exploiting a consensus based approach. Specifically, weighted graphs are used both to define the desired formation, and to implement collision avoidance. As expected for consensus based algorithms, this control strategy is experimentally shown to be robust to the presence of communication delays. The global connectivity maintenance issue is then considered. Specifically, an estimation procedure is introduced to allow each agent to compute its own estimate of the algebraic connectivity of the communication graph, in a distributed manner. This estimate is then exploited to develop a gradient based control strategy that ensures that the communication graph remains connected, as the system evolves. The proposed control strategy is developed initially for single-integrator kinematic agents, and is then extended to Lagrangian dynamical systems.
Resumo:
The radio communication system is one of the most critical system of the overall satellite platform: it often represents the only way of communication, between a spacecraft and the Ground Segment or among a constellation of satellites. This thesis focuses on specific innovative architectures for on-board and on-ground radio systems. In particular, this work is an integral part of a space program started in 2004 at the University of Bologna, Forlì campus, which led to the completion of the microsatellite ALMASat-1, successfully launched on-board the VEGA maiden flight. The success of this program led to the development of a second microsatellite, named ALMASat-EO, a three-axis stabilized microsatellite able to capture images of the Earth surface. Therefore, the first objective of this study was focused on the investigation of an innovative, efficient and low cost architecture for on-board radio communication systems. The TT&C system and the high data rate transmitter for images downlink design and realization are thoroughly described in this work, together with the development of the embedded hardware and the adopted antenna systems. Moreover, considering the increasing interest in the development of constellations of microsatellite, in particular those flying in close formations, a careful analysis has been carried out for the development of innovative communication protocols for inter-satellite links. Furthermore, in order to investigate the system aspects of space communications, a study has been carried out at ESOC having as objective the design, implementation and test of two experimental devices for the enhancement of the ESA GS. Thus, a significant portion of this thesis is dedicated to the description of the results of a method for improving the phase stability of GS radio frequency equipments by means of real-time phase compensation and a new way to perform two antennas arraying tracking using already existing ESA tracking stations facilities.
Resumo:
Millisecond Pulsars (MSPs) are fast rotating, highly magnetized neutron stars. According to the "canonical recycling scenario", MSPs form in binary systems containing a neutron star which is spun up through mass accretion from the evolving companion. Therefore, the final stage consists of a binary made of a MSP and the core of the deeply peeled companion. In the last years, however an increasing number of systems deviating from these expectations has been discovered, thus strongly indicating that our understanding of MSPs is far to be complete. The identification of the optical companions to binary MSPs is crucial to constrain the formation and evolution of these objects. In dense environments such as Globular Clusters (GCs), it also allows us to get insights on the cluster internal dynamics. By using deep photometric data, acquired both from space and ground-based telescopes, we identified 5 new companions to MSPs. Three of them being located in GCs and two in the Galactic Field. The three new identifications in GCs increased by 50% the number of such objects known before this Thesis. They all are non-degenerate stars, at odds with the expectations of the "canonical recycling scenario". These results therefore suggest either that transitory phases should also be taken into account, or that dynamical processes, as exchange interactions, play a crucial role in the evolution of MSPs. We also performed a spectroscopic follow-up of the companion to PSRJ1740-5340A in the GC NGC 6397, confirming that it is a deeply peeled star descending from a ~0.8Msun progenitor. This nicely confirms the theoretical expectations about the formation and evolution of MSPs.
Resumo:
The subject of the present thesis is about the enhancement of orbiter spacecraft navigation capabilities obtained by the standard radiometric link, taking advantage of an imaging payload and making use of a novel definition of optical measurements. An ESA Mission to Mercury called BepiColombo, was selected as a reference case for this study, and in particular its Mercury Planetary Orbiter (MPO), because of the presence of SIMBIO-SYS, an instrument suite part of the MPO payload, capable of acquiring high resolution images of the surface of Mercury. The use of optical measurements for navigation, can provide complementary informations with respect to Doppler, for enhanced performances or a relaxation of the radio tracking requisites in term of ground station schedule. Classical optical techniques based on centroids, limbs or landmarks, were the base to a novel idea for optical navigation, inspired by concepts of stereoscopic vision. In brief, the relation between two overlapped images acquired by a nadir pointed orbiter spacecraft at different times, was defined, and this information was then formulated into an optical measurement, to be processed by a navigation filter. The formulation of this novel optical observable is presented, moreover the analysis of the possible impact on the mission budget and images scheduling is addressed. Simulations are conducted using an orbit determination software already in use for spacecraft navigation in which the proposed optical measurements were implemented and the final results are given.
Resumo:
Detection, localization and tracking of non-collaborative objects moving inside an area is of great interest to many surveillance applications. An ultra- wideband (UWB) multistatic radar is considered as a good infrastructure for such anti-intruder systems, due to the high range resolution provided by the UWB impulse-radio and the spatial diversity achieved with a multistatic configuration. Detection of targets, which are typically human beings, is a challenging task due to reflections from unwanted objects in the area, shadowing, antenna cross-talks, low transmit power, and the blind zones arised from intrinsic peculiarities of UWB multistatic radars. Hence, we propose more effective detection, localization, as well as clutter removal techniques for these systems. However, the majority of the thesis effort is devoted to the tracking phase, which is an essential part for improving the localization accuracy, predicting the target position and filling out the missed detections. Since UWB radars are not linear Gaussian systems, the widely used tracking filters, such as the Kalman filter, are not expected to provide a satisfactory performance. Thus, we propose the Bayesian filter as an appropriate candidate for UWB radars. In particular, we develop tracking algorithms based on particle filtering, which is the most common approximation of Bayesian filtering, for both single and multiple target scenarios. Also, we propose some effective detection and tracking algorithms based on image processing tools. We evaluate the performance of our proposed approaches by numerical simulations. Moreover, we provide experimental results by channel measurements for tracking a person walking in an indoor area, with the presence of a significant clutter. We discuss the existing practical issues and address them by proposing more robust algorithms.