5 resultados para Operations Management systems

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytics is the technology working with the manipulation of data to produce information able to change the world we live every day. Analytics have been largely used within the last decade to cluster people’s behaviour to predict their preferences of items to buy, music to listen, movies to watch and even electoral preference. The most advanced companies succeded in controlling people’s behaviour using analytics. Despite the evidence of the super-power of analytics, they are rarely applied to the big data collected within supply chain systems (i.e. distribution network, storage systems and production plants). This PhD thesis explores the fourth research paradigm (i.e. the generation of knowledge from data) applied to supply chain system design and operations management. An ontology defining the entities and the metrics of supply chain systems is used to design data structures for data collection in supply chain systems. The consistency of this data is provided by mathematical demonstrations inspired by the factory physics theory. The availability, quantity and quality of the data within these data structures define different decision patterns. Ten decision patterns are identified, and validated on-field, to address ten different class of design and control problems in the field of supply chain systems research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This PhD work arises from the necessity to give a contribution to the energy saving field, regarding automotive applications. The aim was to produce a multidisciplinary work to show how much important is to consider different aspects of an electric car realization: from innovative materials to cutting-edge battery thermal management systems (BTMSs), also dealing with the life cycle assessment (LCA) of the battery packs (BPs). Regarding the materials, it has been chosen to focus on carbon fiber composites as their use allows realizing light products with great mechanical properties. Processes and methods to produce carbon fiber goods have been analysed with a special attention on the university solar car Emilia 4. The work proceeds dealing with the common BTMSs on the market (air-cooled, cooling plates, heat pipes) and then it deepens some of the most innovative systems such as the PCM-based BTMSs after a previous experimental campaign to characterize the PCMs. After that, a complex experimental campaign regarding the PCM-based BTMSs has been carried on, considering both uninsulated and insulated systems. About the first category the tested systems have been pure PCM-based and copper-foam-loaded-PCM-based BTMSs; the insulated tested systems have been pure PCM-based and copper-foam-loaded-PCM-based BTMSs and both of these systems equipped with a liquid cooling circuit. The choice of lighter building materials and the optimization of the BTMS are strategies which helps in reducing the energy consumption, considering both the energy required by the car to move and the BP state of health (SOH). Focusing on this last factor, a clear explanation regarding the importance of taking care about the SOH is given by the analysis of a BP production energy consumption. This is why a final dissertation about the life cycle assessment (LCA) of a BP unit has been presented in this thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From its domestication until nowadays, the horse has assumed multiple roles in human society. Over time, this condition and the lack of specific regulation have led to the development of different kinds of management systems for this species. This Ph.D. research project aims to investigate horses' welfare in different management practices and housing systems, considering a multidisciplinary approach, taking into account biological function, naturalness, and affective dimension. The results are presented in five articles that evidence risk factors that can mine horse welfare, and examine tools and parameters that can be employed for its assessment. Our research shows the importance of considering the evolutionary history and the species-specific and behavioural needs of horses in their management and housing. Sociality, free movement, diet composition and foraging routine, and the workload that these animals undergo are important factors that should be taken into account. Furthermore, this research has evidenced the importance of employing different parameters (e.g., behaviour, endocrinological parameters, and immune activity) in welfare assessment and proposes the use of horsehair DHEA (dehydroepiandrosterone) as a possible useful additional non-invasive measure for the investigation of long-term stress conditions. Finally, our results underline the importance of considering the affective dimension in welfare research. Recently, Judgement Bias Tests (JBT), which are based on the influence of affective states on the decision-making process, have been widely employed in animal welfare research. However, our studies show that the use of spatial JBT in horses can have some limitations. Still today several management systems do not fulfill species-specific needs of horses, thus the implementation of specific regulations could ameliorate horse welfare. A multidisciplinary approach to welfare assessment is fundamental, but it should be always remembered the individual and its own characteristics, which can influence not only physiological, immunological, and behavioural responses but also emotional and cognitive dimensions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An essential role in the global energy transition is attributed to Electric Vehicles (EVs) the energy for EV traction can be generated by renewable energy sources (RES), also at a local level through distributed power plants, such as photovoltaic (PV) systems. However, EV integration with electrical systems might not be straightforward. The intermittent RES, combined with the high and uncontrolled aggregate EV charging, require an evolution toward new planning and paradigms of energy systems. In this context, this work aims to provide a practical solution for EV charging integration in electrical systems with RES. A method for predicting the power required by an EV fleet at the charging hub (CH) is developed in this thesis. The proposed forecasting method considers the main parameters on which charging demand depends. The results of the EV charging forecasting method are deeply analyzed under different scenarios. To reduce the EV load intermittency, methods for managing the charging power of EVs are proposed. The main target was to provide Charging Management Systems (CMS) that modulate EV charging to optimize specific performance indicators such as system self-consumption, peak load reduction, and PV exploitation. Controlling the EV charging power to achieve specific optimization goals is also known as Smart Charging (SC). The proposed techniques are applied to real-world scenarios demonstrating performance improvements in using SC strategies. A viable alternative to maximize integration with intermittent RES generation is the integration of energy storage. Battery Energy Storage Systems (BESS) may be a buffer between peak load and RES production. A sizing algorithm for PV+BESS integration in EV charging hubs is provided. The sizing optimization aims to optimize the system's energy and economic performance. The results provide an overview of the optimal size that the PV+BESS plant should have to improve whole system performance in different scenarios.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In pursuit of aligning with the European Union's ambitious target of achieving a carbon-neutral economy by 2050, researchers, vehicle manufacturers, and original equipment manufacturers have been at the forefront of exploring cutting-edge technologies for internal combustion engines. The introduction of these technologies has significantly increased the effort required to calibrate the models implemented in the engine control units. Consequently the development of tools that reduce costs and the time required during the experimental phases, has become imperative. Additionally, to comply with ever-stricter limits on 〖"CO" 〗_"2" emissions, it is crucial to develop advanced control systems that enhance traditional engine management systems in order to reduce fuel consumption. Furthermore, the introduction of new homologation cycles, such as the real driving emissions cycle, compels manufacturers to bridge the gap between engine operation in laboratory tests and real-world conditions. Within this context, this thesis showcases the performance and cost benefits achievable through the implementation of an auto-adaptive closed-loop control system, leveraging in-cylinder pressure sensors in a heavy-duty diesel engine designed for mining applications. Additionally, the thesis explores the promising prospect of real-time self-adaptive machine learning models, particularly neural networks, to develop an automatic system, using in-cylinder pressure sensors for the precise calibration of the target combustion phase and optimal spark advance in a spark-ignition engines. To facilitate the application of these combustion process feedback-based algorithms in production applications, the thesis discusses the results obtained from the development of a cost-effective sensor for indirect cylinder pressure measurement. Finally, to ensure the quality control of the proposed affordable sensor, the thesis provides a comprehensive account of the design and validation process for a piezoelectric washer test system.