3 resultados para Open area
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The research aims at developing a framework for semantic-based digital survey of architectural heritage. Rooted in knowledge-based modeling which extracts mathematical constraints of geometry from architectural treatises, as-built information of architecture obtained from image-based modeling is integrated with the ideal model in BIM platform. The knowledge-based modeling transforms the geometry and parametric relation of architectural components from 2D printings to 3D digital models, and create large amount variations based on shape grammar in real time thanks to parametric modeling. It also provides prior knowledge for semantically segmenting unorganized survey data. The emergence of SfM (Structure from Motion) provides access to reconstruct large complex architectural scenes with high flexibility, low cost and full automation, but low reliability of metric accuracy. We solve this problem by combing photogrammetric approaches which consists of camera configuration, image enhancement, and bundle adjustment, etc. Experiments show the accuracy of image-based modeling following our workflow is comparable to that from range-based modeling. We also demonstrate positive results of our optimized approach in digital reconstruction of portico where low-texture-vault and dramatical transition of illumination bring huge difficulties in the workflow without optimization. Once the as-built model is obtained, it is integrated with the ideal model in BIM platform which allows multiple data enrichment. In spite of its promising prospect in AEC industry, BIM is developed with limited consideration of reverse-engineering from survey data. Besides representing the architectural heritage in parallel ways (ideal model and as-built model) and comparing their difference, we concern how to create as-built model in BIM software which is still an open area to be addressed. The research is supposed to be fundamental for research of architectural history, documentation and conservation of architectural heritage, and renovation of existing buildings.
Resumo:
A novel design based on electric field-free open microwell arrays for the automated continuous-flow sorting of single or small clusters of cells is presented. The main feature of the proposed device is the parallel analysis of cell-cell and cell-particle interactions in each microwell of the array. High throughput sample recovery with a fast and separate transfer from the microsites to standard microtiter plates is also possible thanks to the flexible printed circuit board technology which permits to produce cost effective large area arrays featuring geometries compatible with laboratory equipment. The particle isolation is performed via negative dielectrophoretic forces which convey the particles’ into the microwells. Particles such as cells and beads flow in electrically active microchannels on whose substrate the electrodes are patterned. The introduction of particles within the microwells is automatically performed by generating the required feedback signal by a microscope-based optical counting and detection routine. In order to isolate a controlled number of particles we created two particular configurations of the electric field within the structure. The first one permits their isolation whereas the second one creates a net force which repels the particles from the microwell entrance. To increase the parallelism at which the cell-isolation function is implemented, a new technique based on coplanar electrodes to detect particle presence was implemented. A lock-in amplifying scheme was used to monitor the impedance of the channel perturbed by flowing particles in high-conductivity suspension mediums. The impedance measurement module was also combined with the dielectrophoretic focusing stage situated upstream of the measurement stage, to limit the measured signal amplitude dispersion due to the particles position variation within the microchannel. In conclusion, the designed system complies with the initial specifications making it suitable for cellomics and biotechnology applications.
Resumo:
The electrochemical conversion is a sustainable way for the production of added-value products, operating in mild conditions, using in-situ generated hydrogen/oxygen by water and avoiding the use of high H2/O2 pressures. The aim of this work is to investigate the electrocatalytic conversion of 5-hydroxymetilfurfural (HMF) and D-glucose, in alkaline media, using metallic open-cell foams based-catalysts. The electrochemical hydrogenation of HMF to 2,5-bis(hydroxymethyl)furan (BHMF) was performed using nanostructured Ag, deposited by galvanic displacement (GD) or electrodeposition (ED), on Cu foam, obtaining AgCu bimetallic nanoparticles (ED) or dendrites (GD) which enhanced electroactive surface area, charge and mass transfer, than bare foams. In diluted 0.02M HMF solutions, Ag/Cu samples selectively produce BHMF; the large surface area enhanced the productivity, compared to their 2D counterparts. Furthermore, at more concentrated solutions (0.05 – 0.10M) a gradually decrease of selectivity is observed. The performances of the electrodes is stable during the catalytic tests but a Cu-enrichment of particles occurred. The performances of Ni foam-based catalysts, obtained by calcination of Ni foam or by electrodeposition of Ni-hydroxide/Ni and Ni particle/Ni, were firstly investigated for the selective electrochemical oxidation of D-glucose toward gluconic acid (GO) and glucaric acid (GA). Then, the calcined catalyst was chosen to study the influence of the reaction conditions on the reaction mechanism. The GO and GA selectivities increase with the charge passed, while the formation of by-products from C-C cleavage/retro-aldol process is maximum at low charge. The fructose obtained from glucose isomerization favours the formation of by-products. The best glucose/NaOH ratio is between 0.5 and 0.1: higher values suppress the OER, while lower values favour the formation of low molecular weight products. The increases of the potential enhance the GO selectivity, nevertheless higher GA selectivity is observed at 0.6 – 0.7V vs SCE, confirmed by catalytic test performed in gluconate (30-35% GA selectivity).