11 resultados para One-Up-Bond F
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The quality of temperature and humidity retrievals from the infrared SEVIRI sensors on the geostationary Meteosat Second Generation (MSG) satellites is assessed by means of a one dimensional variational algorithm. The study is performed with the aim of improving the spatial and temporal resolution of available observations to feed analysis systems designed for high resolution regional scale numerical weather prediction (NWP) models. The non-hydrostatic forecast model COSMO (COnsortium for Small scale MOdelling) in the ARPA-SIM operational configuration is used to provide background fields. Only clear sky observations over sea are processed. An optimised 1D–VAR set-up comprising of the two water vapour and the three window channels is selected. It maximises the reduction of errors in the model backgrounds while ensuring ease of operational implementation through accurate bias correction procedures and correct radiative transfer simulations. The 1D–VAR retrieval quality is firstly quantified in relative terms employing statistics to estimate the reduction in the background model errors. Additionally the absolute retrieval accuracy is assessed comparing the analysis with independent radiosonde and satellite observations. The inclusion of satellite data brings a substantial reduction in the warm and dry biases present in the forecast model. Moreover it is shown that the retrieval profiles generated by the 1D–VAR are well correlated with the radiosonde measurements. Subsequently the 1D–VAR technique is applied to two three–dimensional case–studies: a false alarm case–study occurred in Friuli–Venezia–Giulia on the 8th of July 2004 and a heavy precipitation case occurred in Emilia–Romagna region between 9th and 12th of April 2005. The impact of satellite data for these two events is evaluated in terms of increments in the integrated water vapour and saturation water vapour over the column, in the 2 meters temperature and specific humidity and in the surface temperature. To improve the 1D–VAR technique a method to calculate flow–dependent model error covariance matrices is also assessed. The approach employs members from an ensemble forecast system generated by perturbing physical parameterisation schemes inside the model. The improved set–up applied to the case of 8th of July 2004 shows a substantial neutral impact.
Resumo:
Introduction. Craniopharyngioma (CF) is a malformation of the hypothalamicpituitary region and it is the most common nonglial cerebral tumor in children with an high overall survival rate. In some case severe endocrinologic and metabolic sequelae may occur during follow up. 50% of patients (pts), in particular those with radical removal of suprasellar lesions, develop intractable hyperphagia and morbid obesity, with dyslypidemia and high cardiovascular risk. We studied the auxological and metabolic features of a series of 29 patients (18 males) treated at a mean age of 7,6 years, followed up in our Centre from 1973 to 2008 with a mean follow up of 8,3 years. Patients features at the onset. 62% of pts showed as first symptoms of disease visual impairment and neurological disturbancies (headache); 34% growth arrest; 24% signs of raised intracranial pressure and 7% diabetes insipidus. Diagnosis. Diagnosis of CF was reached finally by TC or MRI scans which showed endo-suprasellar lesion in 23 cases and endosellar tumour in 6 cases. Treatment and outcome. 25/29 pts underwent surgical removal of CF (19 by transcranial approach and 6 by endoscopic surgery); 4 pts underwent stereotactic surgery as first line therapy. 3 pts underwent local irradiation with yttrium-90, 5 pts post surgery radiotherapy. 45% of pts needed more than one treatment procedure. Results. After CF treatment all patients suffered from 3 or more pituitary hormone deficiencies and diabetes insipidus. They underwent promptly substitutive therapy with corticosteroids, l-thyroxine and desmopressin. In 28/29 pts we found growth hormone (GH) deficiency. 20/28 pts started GH substitutive therapy and 15 pts reached final height(FH) near target height(TH). 8 pts were not GH treated for good growth velocity, even without GH, or for tumour residual. They reached in 2 cases FH over TH showing the already known phenomenon of growth without GH. 38% of patients showed BMI SDS >2 SDS at last assessment, in particular pts not GH treated (BMI 2,5 SDS) are more obese than GH treated (BMI 1,2 SDS). Lipid panel of 16 examined pts showed significative differencies among GH treated (9 pts) and not treated (7 pts) with better profile in GH treated ones for Total Cholesterol/C-HDL and C-LDL/C-HDL. We examined intima media thickness of common carotid arteries in 11 pts. 3/4 not GH treated pts showed ultrasonographic abnormalities: calcifications in 2 and plaque in 1 case. Of them 1 pt was only 12,6 years old and already showed hypothalamic obesity with hyperphagia, high HOMA index and dyslipidemia. In the GH treated group (7) we found calcifications in 1 case and a plaque in another one. GH therapy was started in the young pt with carotid calcifications, with good improvement within 6 months of treatment. 5/29 pts showed hypothalamic obesity, related to hypothalamic damage (type of surgical treatment, endo-suprasellar primitive lesion, recurrences). 48% of patients recurred during follow up ( mean time from treatment: 3 years) and underwent, in some cases up to 4 transcranial surgical treatments. GH seems not to increase recurrence rate since 40% of GH treated recurred vs 66,6% of not GH treated pts. Discussion. Our data show the extereme difficulties that occur during follow up of craniopharyngioma treated patients. GH therapy should be offered to all patients even with good growth velocity after CF treatment, to avoid dislypidemia and reduce cardiovascular risk. The optimal therapy is not completely understood and whether gross tumor removal or partial surgery is the best option remains to be decided only on one patient tumour features and hypothalamic involvement. In conclusion the gold standard treatment of CF remains complete tumour removal, when feasible, or partial resection to preserve hypothalamic function in endosuprasellar large neoplasms.
Resumo:
Supramolecular self-assembly represents a key technology for the spontaneous construction of nanoarchitectures and for the fabrication of materials with enhanced physical and chemical properties. In addition, a significant asset of supramolecular self-assemblies rests on their reversible formation, thanks to the kinetic lability of their non-covalent interactions. This dynamic nature can be exploited for the development of “self-healing” and “smart” materials towards the tuning of their functional properties upon various external factors. One particular intriguing objective in the field is to reach a high level of control over the shape and size of the supramolecular architectures, in order to produce well-defined functional nanostructures by rational design. In this direction, many investigations have been pursued toward the construction of self-assembled objects from numerous low-molecular weight scaffolds, for instance by exploiting multiple directional hydrogen-bonding interactions. In particular, nucleobases have been used as supramolecular synthons as a result of their efficiency to code for non-covalent interaction motifs. Among nucleobases, guanine represents the most versatile one, because of its different H-bond donor and acceptor sites which display self-complementary patterns of interactions. Interestingly, and depending on the environmental conditions, guanosine derivatives can form various types of structures. Most of the supramolecular architectures reported in this Thesis from guanosine derivatives require the presence of a cation which stabilizes, via dipole-ion interactions, the macrocyclic G-quartet that can, in turn, stack in columnar G-quadruplex arrangements. In addition, in absence of cations, guanosine can polymerize via hydrogen bonding to give a variety of supramolecular networks including linear ribbons. This complex supramolecular behavior confers to the guanine-guanine interactions their upper interest among all the homonucleobases studied. They have been subjected to intense investigations in various areas ranging from structural biology and medicinal chemistry – guanine-rich sequences are abundant in telomeric ends of chromosomes and promoter regions of DNA, and are capable of forming G-quartet based structures– to material science and nanotechnology. This Thesis, organized into five Chapters, describes mainly some recent advances in the form and function provided by self-assembly of guanine based systems. More generally, Chapter 4 will focus on the construction of supramolecular self-assemblies whose self-assembling process and self-assembled architectures can be controlled by light as external stimulus. Chapter 1 will describe some of the many recent studies of G-quartets in the general area of nanoscience. Natural G- quadruplexes can be useful motifs to build new structures and biomaterials such as self-assembled nanomachines, biosensors, therapeutic aptamer and catalysts. In Chapters 2-4 it is pointed out the core concept held in this PhD Thesis, i.e. the supramolecular organization of lipophilic guanosine derivatives with photo or chemical addressability. Chapter 2 will mainly focus on the use of cation-templated guanosine derivatives as a potential scaffold for designing functional materials with tailored physical properties, showing a new way to control the bottom-up realization of well-defined nanoarchitectures. In section 2.6.7, the self-assembly properties of compound 28a may be considered an example of open-shell moieties ordered by a supramolecular guanosine architecture showing a new (magnetic) property. Chapter 3 will report on ribbon-like structures, supramolecular architectures formed by guanosine derivatives that may be of interest for the fabrication of molecular nanowires within the framework of future molecular electronic applications. In section 3.4 we investigate the supramolecular polymerizations of derivatives dG 1 and G 30 by light scattering technique and TEM experiments. The obtained data reveal the presence of several levels of organization due to the hierarchical self-assembly of the guanosine units in ribbons that in turn aggregate in fibrillar or lamellar soft structures. The elucidation of these structures furnishes an explanation to the physical behaviour of guanosine units which display organogelator properties. Chapter 4 will describe photoresponsive self-assembling systems. Numerous research examples have demonstrated that the use of photochromic molecules in supramolecular self-assemblies is the most reasonable method to noninvasively manipulate their degree of aggregation and supramolecular architectures. In section 4.4 we report on the photocontrolled self-assembly of modified guanosine nucleobase E-42: by the introduction of a photoactive moiety at C8 it is possible to operate a photocontrol over the self-assembly of the molecule, where the existence of G-quartets can be alternately switched on and off. In section 4.5 we focus on the use of cyclodextrins as photoresponsive host-guest assemblies: αCD–azobenzene conjugates 47-48 (section 4.5.3) are synthesized in order to obtain a photoresponsive system exhibiting a fine photocontrollable degree of aggregation and self-assembled architecture. Finally, Chapter 5 contains the experimental protocols used for the research described in Chapters 2-4.
Resumo:
La dermoscopia, metodica non invasiva, di pratico utilizzo e a basso costo si è affermata negli ultimi anni come valido strumento per la diagnosi e il follow up delle lesioni cutanee pigmentate e non pigmentate. La presente ricerca è stata incentrata sullo studio dermoscopico dei nevi melanocitici a localizzazione palmo-plantare, acquisiti e congeniti, in età pediatrica: a questo scopo sono state analizzate le immagini dei nevi melanocitici acrali nei pazienti visitati c/o l’ambulatorio di Dermatologia Pediatrica del Policlinico Sant’Orsola Malpighi dal 2004 al 2011 per definire i principali pattern dermoscopici rilevati ed i cambiamenti osservati durante il follow up videodermatoscopico. Nella nostra casistica di immagini dermoscopiche pediatriche abbiamo notato un cambiamento rilevante (inteso come ogni modificazione rilevata tra il pattern demoscopico osservato al baseline e i successivi follow up) nell’88,6% dei pazienti ed in particolare abbiamo osservato come in un’alta percentuale di pazienti (80%), si sia verificato un vero e proprio impallidimento del nevo melanocitico e in un paziente è stata evidenziata totale regressione dopo un periodo di tempo di 36 mesi. E’ stato interessante notare come l’impallidimento della lesione melanocitaria si sia verificata per lo più in sedi sottoposte ad una sollecitazione meccanica cronica, come la pianta del piede e le dita (di mani e piedi), facendoci ipotizzare un ruolo del traumatismo cronico nelle modificazioni che avvengono nelle neoformazioni melanocitarie dei bambini in questa sede.
Resumo:
This study is focused on radio-frequency inductively coupled thermal plasma (ICP) synthesis of nanoparticles, combining experimental and modelling approaches towards process optimization and industrial scale-up, in the framework of the FP7-NMP SIMBA European project (Scaling-up of ICP technology for continuous production of Metallic nanopowders for Battery Applications). First the state of the art of nanoparticle production through conventional and plasma routes is summarized, then results for the characterization of the plasma source and on the investigation of the nanoparticle synthesis phenomenon, aiming at highlighting fundamental process parameters while adopting a design oriented modelling approach, are presented. In particular, an energy balance of the torch and of the reaction chamber, employing a calorimetric method, is presented, while results for three- and two-dimensional modelling of an ICP system are compared with calorimetric and enthalpy probe measurements to validate the temperature field predicted by the model and used to characterize the ICP system under powder-free conditions. Moreover, results from the modeling of critical phases of ICP synthesis process, such as precursor evaporation, vapour conversion in nanoparticles and nanoparticle growth, are presented, with the aim of providing useful insights both for the design and optimization of the process and on the underlying physical phenomena. Indeed, precursor evaporation, one of the phases holding the highest impact on industrial feasibility of the process, is discussed; by employing models to describe particle trajectories and thermal histories, adapted from the ones originally developed for other plasma technologies or applications, such as DC non-transferred arc torches and powder spherodization, the evaporation of micro-sized Si solid precursor in a laboratory scale ICP system is investigated. Finally, a discussion on the role of thermo-fluid dynamic fields on nano-particle formation is presented, as well as a study on the effect of the reaction chamber geometry on produced nanoparticle characteristics and process yield.
Resumo:
Semiconductor nanowires (NWs) are one- or quasi one-dimensional systems whose physical properties are unique as compared to bulk materials because of their nanoscaled sizes. They bring together quantum world and semiconductor devices. NWs-based technologies may achieve an impact comparable to that of current microelectronic devices if new challenges will be faced. This thesis primarily focuses on two different, cutting-edge aspects of research over semiconductor NW arrays as pivotal components of NW-based devices. The first part deals with the characterization of electrically active defects in NWs. It has been elaborated the set-up of a general procedure which enables to employ Deep Level Transient Spectroscopy (DLTS) to probe NW arrays’ defects. This procedure has been applied to perform the characterization of a specific system, i.e. Reactive Ion Etched (RIE) silicon NW arrays-based Schottky barrier diodes. This study has allowed to shed light over how and if growth conditions introduce defects in RIE processed silicon NWs. The second part of this thesis concerns the bowing induced by electron beam and the subsequent clustering of gallium arsenide NWs. After a justified rejection of the mechanisms previously reported in literature, an original interpretation of the electron beam induced bending has been illustrated. Moreover, this thesis has successfully interpreted the formation of NW clusters in the framework of the lateral collapse of fibrillar structures. These latter are both idealized models and actual artificial structures used to study and to mimic the adhesion properties of natural surfaces in lizards and insects (Gecko effect). Our conclusion are that mechanical and surface properties of the NWs, together with the geometry of the NW arrays, play a key role in their post-growth alignment. The same parameters open, then, to the benign possibility of locally engineering NW arrays in micro- and macro-templates.
Resumo:
L’ictus è un importante problema di salute pubblica, è causa di morte e disabilità nella popolazione anziana. La necessità di strategie di prevenzione secondaria e terziaria per migliorare il funzionamento post-ictus e prevenire o ritardare altre condizioni disabilitanti, ha portato l’Italia a sviluppare un intervento di Attività Fisica Adattata (AFA) per l’ictus, che permettesse di migliorare gli esiti della riabilitazione. Obiettivo dello studio è di valutare se l’AFA unita all’Educazione Terapeutica (ET), rispetto al trattamento riabilitativo standard, migliora il funzionamento e la qualità di vita in pazienti con ictus. Studio clinico non randomizzato, in cui sono stati valutati 229 pazienti in riabilitazione post-ictus, 126 nel gruppo sperimentale (AFA+ET) e 103 nel gruppo di controllo. I pazienti sono stati valutati al baseline, a 4 e a 12 mesi di follow-up. Le misure di esito sono il cambiamento a 4 mesi di follow-up (che corrisponde a 2 mesi post-intervento nel gruppo sperimentale) di: distanza percorsa, Berg Balance Scale, Short Physical Performance Battery, e Motricity Index. Le variabili misurate a 4 e a 12 mesi di follow-up sono: Barthel Index, Geriatric Depression Scale, SF-12 e Caregiver Strain Index. La distanza percorsa, la performance fisica, l’equilibrio e il punteggio della componente fisica della qualità di vita sono migliorate a 4 mesi nel gruppo AFA+ET e rimasti stabili nel gruppo di controllo. A 12 mesi di follow-up, il gruppo AFA+ET ottiene un cambiamento maggiore, rispetto al gruppo di controllo, nell’abilità di svolgimento delle attività giornaliere e nella qualità di vita. Infine il gruppo AFA+ET riporta, nell’ultimo anno, un minor numero di fratture e minor ricorso a visite riabilitative rispetto al gruppo di controllo. I risultati confermano che l’AFA+ET è efficace nel migliorare le condizioni cliniche di pazienti con ictus e che gli effetti, soprattutto sulla riabilitazione fisica, sono mantenuti anche a lungo termine.
Resumo:
Lo studio ha posto l'attenzione sul rapporto costo-efficacia tra le metodiche più utilizzate per la rimozione di carcinomi basocellulari: l'asportazione chirurgica e la terapia fotodinamica. Dai dati si evince che la rimozione chirurgica è la metodica più efficace per la minore frequenza di recidive (4.7%) rispetto alla terapia fotodinamica (6%). Questo dato è valido unicamente per i carcinomi superficiali; per i carcinomi nodulari la frequenza di recidiva con la terapia fotodinamica risulta essere più elevata (35%). La chirurgia è una metodica più costosa rispetto alla fotodinamica. La variabile dolore risulta essere minore per la chirurgia rispetto alla fotodinamica. Il risultato estetico invece è migliore per la fotodinamica rispetto alla terapia chirurgica. I costi invece sono più elevati per la terapia chirurgica. Rimane un'ultima considerazione: la terapia fotodinamica richiede talvolta un nuovo intervento a distanza di mesi o anni e pertanto questa scelta comporta costi aggiuntivi.
Resumo:
This thesis presents a new approach for the design and fabrication of bond wire magnetics for power converter applications by using standard IC gold bonding wires and micro-machined magnetic cores. It shows a systematic design and characterization study for bond wire transformers with toroidal and race-track cores for both PCB and silicon substrates. Measurement results show that the use of ferrite cores increases the secondary self-inductance up to 315 µH with a Q-factor up to 24.5 at 100 kHz. Measurement results on LTCC core report an enhancement of the secondary self-inductance up to 23 µH with a Q-factor up to 10.5 at 1.4 MHz. A resonant DC-DC converter is designed in 0.32 µm BCD6s technology at STMicroelectronics with a depletion nmosfet and a bond wire micro-transformer for EH applications. Measures report that the circuit begins to oscillate from a TEG voltage of 280 mV while starts to convert from an input down to 330 mV to a rectified output of 0.8 V at an input of 400 mV. Bond wire magnetics is a cost-effective approach that enables a flexible design of inductors and transformers with high inductance and high turns ratio. Additionally, it supports the development of magnetics on top of the IC active circuitry for package and wafer level integrations, thus enabling the design of high density power components. This makes possible the evolution of PwrSiP and PwrSoC with reliable highly efficient magnetics.
Resumo:
Background: sebbene la letteratura recente abbia suggerito che l’utilizzo degli impianti corti possa rappresentare una alternative preferibile alle procedure di rigenerazione ossea nelle aree posteriori atrofiche, perché è un trattamento più semplice e con meno complicazioni, esistono solo pochi studi a medio e lungo termine che abbiano comparato queste tecniche. Scopo: lo scopo di questo studio retrospettivo è quello di valutare se gli impianti corti (6-8 mm) (gruppo impianti corti) possano presentare percentuali di sopravvivenza e valori di riassorbimento osseo marginali simili a impianti di dimensioni standard (≥11 mm) inseriti contemporaneamente ad una grande rialzo di seno mascellare. Materiali e Metodi: in totale, 101 pazienti sono stati inclusi: 48 nel gruppo impianti corti e 53 nel gruppo seno. In ciascun paziente da 1 a 3 impianti sono stati inseriti e tenuti sommersi per 4-6 mesi. I parametri clinici e radiografici valutati sono: i fallimenti implantari, le complicazioni, lo stato dei tessuti molli, e il riassorbimento osseo marginale. Tutti i pazienti sono stati seguiti per almeno 3 anni dal posizionamento implantare. Risultati: il periodo di osservazione medio è stato di 43.47 ± 6.1 mesi per il gruppo impianti corti e 47.03 ± 7.46 mesi per il gruppo seno. Due su 101 impianti corti e 6 su 108 impianti standard sono falliti. Al follow-up finale, si è riscontrato un riassorbimento osseo medio di 0.47 ± 0.48 mm nel gruppo impianti corti versus 0.64 ± 0.58 mm nel gruppo seno. Non sono presenti differenze statisticamente significative fra i gruppi in termini di fallimenti implantari, complicazioni protesiche, tessuti molli, e riassorbimento osseo. Il gruppo seno ha presentato, invece, un maggior numero di complicazioni chirurgiche. Conclusioni: entrambe le tecniche hanno dimostrato un simile tasso di successo clinico e radiografico, ma gli impianti corti hanno ridotto il numero di complicazioni chirurgiche.
Resumo:
The aim of this thesis is to investigate the nature of quantum computation and the question of the quantum speed-up over classical computation by comparing two different quantum computational frameworks, the traditional quantum circuit model and the cluster-state quantum computer. After an introductory survey of the theoretical and epistemological questions concerning quantum computation, the first part of this thesis provides a presentation of cluster-state computation suitable for a philosophical audience. In spite of the computational equivalence between the two frameworks, their differences can be considered as structural. Entanglement is shown to play a fundamental role in both quantum circuits and cluster-state computers; this supports, from a new perspective, the argument that entanglement can reasonably explain the quantum speed-up over classical computation. However, quantum circuits and cluster-state computers diverge with regard to one of the explanations of quantum computation that actually accords a central role to entanglement, i.e. the Everett interpretation. It is argued that, while cluster-state quantum computation does not show an Everettian failure in accounting for the computational processes, it threatens that interpretation of being not-explanatory. This analysis presented here should be integrated in a more general work in order to include also further frameworks of quantum computation, e.g. topological quantum computation. However, what is revealed by this work is that the speed-up question does not capture all that is at stake: both quantum circuits and cluster-state computers achieve the speed-up, but the challenges that they posit go besides that specific question. Then, the existence of alternative equivalent quantum computational models suggests that the ultimate question should be moved from the speed-up to a sort of “representation theorem” for quantum computation, to be meant as the general goal of identifying the physical features underlying these alternative frameworks that allow for labelling those frameworks as “quantum computation”.