8 resultados para Olive fly.
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Questo lavoro di tesi è stato suddiviso in tre parti. L’argomento principale è stato lo “Studio della componente antiossidante di oli ottenuti da olive mediante l’utilizzo di diversi sistemi e parametri tecnologici”. E’ ben noto come la qualità ossidativa di un olio di oliva dipenda oltre che dalla sua composizione in acidi grassi, dalla presenza di composti caratterizzati da un elevata attività antiossidante, ovvero le sostanze fenoliche. I composti fenolici contribuiscono quindi in maniera preponderante alla shelf life dell’olio extravergine di oliva. Inoltre sono state riscontrate delle forti correlazione tra alcune di queste sostanze e gli attributi sensoriali positivi di amaro e piccante. E’ poi da sottolineare come il potere antiossidante dei composti fenolici degli oli vergini di oliva, sia stato negli ultimi anni oggetto di considerevole interesse, poiché correlato alla protezione da alcune patologie come ad esempio quelle vascolari, degenerative e tumorali. Il contenuto delle sostanze fenoliche negli oli di oliva dipende da diversi fattori: cultivar, metodo di coltivazione, grado di maturazione delle olive e ovviamente dalle operazioni tecnologiche poiché possono variare il quantitativo di questi composti estratto. Alla luce di quanto appena detto abbiamo valutato l’influenza dei fattori agronomici (metodi di agricoltura biologica, integrata e convenzionale) e tecnologici (riduzione della temperatura della materia prima, aggiunta di coadiuvanti in fase di frangitura e di gramolatura, confronto tra tre oli extravergini di oliva ottenuti mediante diversi sistemi tecnologici) sul contenuto in composti fenolici di oli edibili ottenuti da olive (paper 1-3-4). Oltre alle sostanze fenoliche, negli oli di oliva sono presenti altri composti caratterizzati da proprietà chimiche e nutrizionali, tra questi vi sono i fitosteroli, ovvero gli steroli tipici del mondo vegetale, che rappresentano la frazione dell’insaponificabile quantitativamente più importante dopo gli idrocarburi. La composizione quali-quantitativa degli steroli di un olio di oliva è una delle caratteristiche analitiche più importanti nella valutazione della sua genuinità; infatti la frazione sterolica è significativamente diversa in funzione dell’origine botanica e perciò viene utilizzata per distinguere tra di loro gli oli e le loro miscele. Il principale sterolo nell’olio di oliva è il β- sitosterolo, la presenza di questo composto in quantità inferiore al 90% è un indice approssimativo dell’aggiunta di un qualsiasi altro olio. Il β-sitosterolo è una sostanza importante dal punto di vista della salute, poiché si oppone all’assorbimento del colesterolo. Mentre in letteratura si trovano numerosi lavori relativi al potere antiossidante di una serie di composti presenti nell’olio vergine di oliva (i già citati polifenoli, ma anche carotenoidi e tocoferoli) e ricerche che dimostrano invece come altri composti possano promuovere l’ossidazione dei lipidi, per quanto riguarda il potere antiossidante degli steroli e dei 4- metilsteroli, vi sono ancora poche informazioni. Per questo è stata da noi valutata la composizione sterolica in oli extravergini di oliva ottenuti con diverse tecnologie di estrazione e l’influenza di questa sostanza sulla loro stabilità ossidativa (paper 2). E’ stato recentemente riportato in letteratura come lipidi cellulari evidenziati attraverso la spettroscopia di risonanza nucleare magnetica (NMR) rivestano una importanza strategica da un punto di vista funzionale e metabolico. Questi lipidi, da un lato un lato sono stati associati allo sviluppo di cellule neoplastiche maligne e alla morte cellulare, dall’altro sono risultati anche messaggeri di processi benigni quali l’attivazione e la proliferazione di un normale processo di crescita cellulare. Nell’ambito di questa ricerca è nata una collaborazione tra il Dipartimento di Biochimica “G. Moruzzi” ed il Dipartimento di Scienze degli Alimenti dell’Università di Bologna. Infatti, il gruppo di lipochimica del Dipartimento di Scienze degli Alimenti, a cui fa capo il Prof. Giovanni Lercker, da sempre si occupa dello studio delle frazioni lipidiche, mediante le principali tecniche cromatografiche. L’obiettivo di questa collaborazione è stato quello di caratterizzare la componente lipidica totale estratta dai tessuti renali umani sani e neoplastici, mediante l’utilizzo combinato di diverse tecniche analitiche: la risonanza magnetica nucleare (1H e 13C RMN), la cromatografia su strato sottile (TLC), la cromatografia liquida ad alta prestazione (HPLC) e la gas cromatografia (GC) (paper 5-6-7)
Resumo:
The olive oil extraction industry is responsible for the production of high quantities of vegetation waters, represented by the constitutive water of the olive fruit and by the water used during the process. This by-product represent an environmental problem in the olive’s cultivation areas because of its high content of organic matter, with high value of BOD5 and COD. For that reason the disposal of the vegetation water is very difficult and needs a previous depollution. The organic matter of vegetation water mainly consists of polysaccharides, sugars, proteins, organic acids, oil and polyphenols. This last compounds are the principal responsible for the pollution problems, due to their antimicrobial activity, but, at the same time they are well known for their antioxidant properties. The most concentrate phenolic compounds in waters and also in virgin olive oils are secoiridoids like oleuropein, demethyloleuropein and ligstroside derivatives (the dialdehydic form of elenolic acid linked to 3,4-DHPEA, or p-HPEA (3,4-DHPEA-EDA or p-HPEA-EDA) and an isomer of the oleuropein aglycon (3,4-DHPEA-EA). The management of the olive oil vegetation water has been extensively investigated and several different valorisation methods have been proposed, such as the direct use as fertilizer or the transformation by physico-chemical or biological treatments. During the last years researchers focused their interest on the recovery of the phenolic fraction from this waste looking for its exploitation as a natural antioxidant source. At the present only few contributes have been aimed to the utilization for a large scale phenols recovery and further investigations are required for the evaluation of feasibility and costs of the proposed processes. The present PhD thesis reports a preliminary description of a new industrial scale process for the recovery of the phenolic fraction from olive oil vegetation water treated with enzymes, by direct membrane filtration (microfiltration/ultrafiltration with a cut-off of 250 KDa, ultrafiltration with a cut-off of 7 KDa/10 KDa and nanofiltration/reverse osmosis), partial purification by the use of a purification system based on SPE analysis and by a liquid-liquid extraction system (LLE) with contemporary reduction of the pollution related problems. The phenolic fractions of all the samples obtained were qualitatively and quantitatively by HPLC analysis. The work efficiency in terms of flows and in terms of phenolic recovery gave good results. The final phenolic recovery is about 60% respect the initial content in the vegetation waters. The final concentrate has shown a high content of phenols that allow to hypothesize a possible use as zootechnic nutritional supplements. The purification of the final concentrate have garanteed an high purity level of the phenolic extract especially in SPE analysis by the use of XAD-16 (73% of the total phenolic content of the concentrate). This purity level could permit a future food industry employment such as food additive, or, thanks to the strong antioxidant activity, it would be also use in pharmaceutical or cosmetic industry. The vegetation water depollutant activity has brought good results, as a matter of fact the final reverse osmosis permeate has a low pollutant rate in terms of COD and BOD5 values (2% of the initial vegetation water), that could determinate a recycling use in the virgin olive oil mechanical extraction system producing a water saving and reducing thus the oil industry disposal costs .
Resumo:
This Ph.D. thesis focuses on the investigation of some chemical and sensorial analytical parameters linked to the quality and purity of different categories of oils obtained by olives: extra virgin olive oils, both those that are sold in the large retail trade (supermarkets and discounts) and those directly collected at some Italian mills, and lower-quality oils (refined, lampante and “repaso”). Concurrently with the adoption of traditional and well-known analytical procedures such as gas chromatography and high-performance liquid chromatography, I carried out a set-up of innovative, fast and environmentally-friend methods. For example, I developed some analytical approaches based on Fourier transform medium infrared spectroscopy (FT-MIR) and time domain reflectometry (TDR), coupled with a robust chemometric elaboration of the results. I investigated some other freshness and quality markers that are not included in official parameters (in Italian and European regulations): the adoption of such a full chemical and sensorial analytical plan allowed me to obtain interesting information about the degree of quality of the EVOOs, mostly within the Italian market. Here the range of quality of EVOOs resulted very wide, in terms of sensory attributes, price classes and chemical parameters. Thanks to the collaboration with other Italian and foreign research groups, I carried out several applicative studies, especially focusing on the shelf-life of oils obtained by olives and on the effects of thermal stresses on the quality of the products. I also studied some innovative technological treatments, such as the clarification by using inert gases, as an alternative to the traditional filtration. Moreover, during a three-and-a-half months research stay at the University of Applied Sciences in Zurich, I also carried out a study related to the application of statistical methods for the elaboration of sensory results, obtained thanks to the official Swiss Panel and to some consumer tests.
Resumo:
This research work is aimed at the valorization of two types of pomace deriving from the extra virgin olive oil mechanical extraction process, such as olive pomace and a new by-product named “paté”, in the livestock sector as important sources of antioxidants and unsaturated fatty acids. In the first research the suitability of dried stoned olive pomace as a dietary supplement for dairy buffaloes was evaluated. The effectiveness of this utilization in modifying fatty acid composition and improving the oxidative stability of buffalo milk and mozzarella cheese have been proven by means of the analysis of qualitative and quantitative parameters. In the second research the use of paté as a new by-product in dietary feed supplementation for dairy ewes, already fed with a source of unsaturated fatty acids such as extruded linseed, was studied in order to assess the effect of this combination on the dairy products obtained. The characterization of paté as a new by-product was also carried out, studying the optimal conditions of its stabilization and preservation at the same time. The main results, common to both researches, have been the detection and the characterization of hydrophilic phenols in the milk. The analytical detection of hydroxytyrosol and tyrosol in the ewes’ milk fed with the paté and hydroxytyrosol in buffalo fed with pomace showed for the first time the presence in the milk of hydroxytyrosol, which is one of the most important bioactive compounds of the oil industry products; the transfer of these antioxidants and the proven improvement of the quality of milk fat could positively interact in the prevention of some human cardiovascular diseases and some tumours, increasing in this manner the quality of dairy products, also improving their shelf-life. These results also provide important information on the bioavailability of these phenolic compounds.
Resumo:
Virgin olive oil(VOO) is a product characterized by high economic and nutritional values, because of its superior sensory characteristics and minor compounds (phenols and tocopherols) contents. Since the original quality of VOO may change during its storage, this study aimed to investigate the influence of different storage and shipment conditions on the quality of VOO, by studying different solutions such as filtration, dark storage and shipment inside insulated containers to protect it. Different analytical techniques were used to follow-up the quality changes during virgin olive oil storage and simulated shipments, in terms of basic quality parameters, sensory analysis and evaluation of minor components (phenolic compounds, diglycerides, volatile compounds). Four main research streams were presented in this PhD thesis: The results obtained from the first experimental section revealed that the application of filtration and/or clarification can decrease the unavoidable quality loss of the oil samples during storage, in comparison with unfiltered oil samples. The second section indicated that the virgin olive oil freshness, evaluated by diglycerides content, was mainly affected by the storage time and temperature. The third section revealed that fluctuation in temperature during storage may adversely affect the virgin olive oil quality, in terms of hydrolytic rancidity and oxidation quality. The fourth section showed that virgin olive oil shipped inside insulated containers showed lower hydrolytic and oxidation degradation than those without insulation cover. Overall, this PhD thesis highlighted that application of adequate treatment, such as filtration or clarification, in addition to a good protection against other external variables, such as temperature and light, will improve the stability of virgin olive oil during storage.
Resumo:
This Ph.D. project aimed to the development and improvement of analytical solutions for control of quality and authenticity of virgin olive oils. According to this main objective, different research activities were carried out: concerning the quality control of olive oil, two of the official parameters defined by regulations (free acidity and fatty acid ethyl esters) were taken into account, and more sustainable and easier analytical solutions were developed and validated in-house. Regarding authenticity, two different issues were faced: verification of the geographical origin of extra virgin (EVOOs) and virgin olive oils (VOOs), and assessment of soft-deodorized oils illegally mixed with EVOOs. About fatty acid ethyl esters, a revised method based on the application of off-line HPLC-GC-FID (with PTV injector), revising both the preparative phase and the GC injector required in the official method, was developed. Next, the method was in-house validated evaluating several parameters. Concerning free acidity, a portable system suitable for in-situ measurements of VOO free acidity was developed and in-house validated. Its working principle is based on the estimation of the olive oil free acidity by measuring the conductance of an emulsion between a hydro-alcoholic solution and the sample to be tested. The procedure is very quick and easy and, therefore, suitable for people without specific training. Another study developed during the Ph.D. was about the application of flash gas chromatography for volatile compounds analysis, combined with untargeted chemometric data elaborations, for discrimination of EVOOs and VOOs of different geographical origin. A set of 210 samples coming from different EU member states and extra-EU countries were collected and analyzed. Data were elaborated applying two different classification techniques, one linear (PLS-DA) and one non-linear (ANN). Finally, a preliminary study about the application of GC-IMS (Gas Chromatograph - Ion Mobility Spectrometer) for assessment of soft-deodorized olive oils was carried out.
Resumo:
At the beginning, this Ph.D. project led to an overview of the most common and emerging types of fraud and possible countermeasures in the olive oil sector. Furthermore, possible weaknesses in the current conformity check system for olive oil were highlighted. Among those, despite the organoleptic assessment is a fundamental tool for establishing the virgin olive oils (VOOs) quality grade, the scientific community has evidenced some drawbacks in it. In particular, the application of instrumental screening methods to support the panel test could reduce the work of sensory panels and the cost of this analysis (e.g. for industries, distributors, public and private control laboratories), permitting the increase in the number and the efficiency of the controls. On this basis, a research line called “Quantitative Panel Test” is one of the main expected outcomes of the OLEUM project that is also partially discussed in this doctoral dissertation. In this framework, analytical activities were carried out, within this PhD project, aimed to develop and validate analytical protocols for the study of the profiles in volatile compounds (VOCs) of the VOOs headspace. Specifically, two chromatographic approaches, one targeted and one semi-targeted, to determine VOCs were investigated in this doctoral thesis. The obtained results, will allow the possible establishment of concentration limits and ranges of selected volatile markers, as related to fruitiness and defects, with the aim to support the panel test in the commercial categorization of VOOs. In parallel, a rapid instrumental screening method based on the analysis of VOCs has been investigated to assist the panel test through a fast pre-classification of VOOs samples based on a known level of probability, thus increasing the efficiency of quality control.
Resumo:
The purpose of this thesis work was the valorization of the main by-products obtained from olive oil production chain (wastewater and pomace) and their utilization in innovative food formulation. In the first part of the thesis, an olive mill wastewater extract rich in phenols were used in the formulation of 3 innovative meat products: beef hamburgers, cooked ham and würstels. These studies confirms that olive mill wastewaters extract rich in phenols could be an alternative for the reduction/total replacement of additives (i.e., nitrites) in ground and cooked meat preparations, which would promote the formulation of healthier clean label products and improve the sustainability of the olive oil industry with a circular economy approach, by further valorizing this olive by-product. In the second part of the thesis, the lipid composition and oxidative stability of a spreadable product obtained from a fermented and biologically de-bittered olive pomace, was assessed during a shelf-life study. This study confirmed that olive pomace represents an excellent ingredient for the formulation of functional foods In the third and last part of the thesis, carried out at the Universidad de Navarra (Pamplona, Spain), during a period abroad (3 months), three extracts obtained from purification of olive mill wastewaters, were subjected to in-vitro digestion and characterized. From the analysis of the three phenolic extracts, it emerged that the most promising extract to be used in the food field is the spry-dried one. Thanks to its formulation containing maltodextrins it manages to maintain its antioxidant capacity even after being underwent to in-vitro digestion. This thesis work is a part of the PRIN 2015 project (PROT: 20152LFKAT) "Olive phenols as multifunctional bioactives for healthier food: evaluation of simplified formulation to obtain safe meat products and new foods with higher functionality", coordinated by University of Perugia.