2 resultados para Ocean-atmosphere interaction
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This PhD thesis addresses the topic of large-scale interactions between climate and marine biogeochemistry. To this end, centennial simulations are performed under present and projected future climate conditions with a coupled ocean-atmosphere model containing a complex marine biogeochemistry model. The role of marine biogeochemistry in the climate system is first investigated. Phytoplankton solar radiation absorption in the upper ocean enhances sea surface temperatures and upper ocean stratification. The associated increase in ocean latent heat losses raises atmospheric temperatures and water vapor. Atmospheric circulation is modified at tropical and extratropical latitudes with impacts on precipitation, incoming solar radiation, and ocean circulation which cause upper-ocean heat content to decrease at tropical latitudes and to increase at middle latitudes. Marine biogeochemistry is tightly related to physical climate variability, which may vary in response to internal natural dynamics or to external forcing such as anthropogenic carbon emissions. Wind changes associated with the North Atlantic Oscillation (NAO), the dominant mode of climate variability in the North Atlantic, affect ocean properties by means of momentum, heat, and freshwater fluxes. Changes in upper ocean temperature and mixing impact the spatial structure and seasonality of North Atlantic phytoplankton through light and nutrient limitations. These changes affect the capability of the North Atlantic Ocean of absorbing atmospheric CO2 and of fixing it inside sinking particulate organic matter. Low-frequency NAO phases determine a delayed response of ocean circulation, temperature and salinity, which in turn affects stratification and marine biogeochemistry. In 20th and 21st century simulations natural wind fluctuations in the North Pacific, related to the two dominant modes of atmospheric variability, affect the spatial structure and the magnitude of the phytoplankton spring bloom through changes in upper-ocean temperature and mixing. The impacts of human-induced emissions in the 21st century are generally larger than natural climate fluctuations, with the phytoplankton spring bloom starting one month earlier than in the 20th century and with ~50% lower magnitude. This PhD thesis advances the knowledge of bio-physical interactions within the global climate, highlighting the intrinsic coupling between physical climate and biosphere, and providing a framework on which future studies of Earth System change can be built on.
Resumo:
The most ocean - atmosphere exchanges take place in polar environments due to the low temperatures which favor the absorption processes of atmospheric gases, in particular CO2. For this reason, the alterations of biogeochemical cycles in these areas can have a strong impact on the global climate. With the aim of contributing to the definition of the mechanisms regulating the biogeochemical fluxes we have analyzed the particles collected in the Ross Sea in different years (ROSSMIZE, BIOSESO 1 and 2, ROAVERRS and ABIOCLEAR projects) in two sites (mooring A and B). So it has been developed a more efficient method to prepare sediment trap samples for the analyses. We have also processed satellite data of sea ice, chlorophyll a and diatoms concentration. At both sites, in each year considered, there was a high seasonal and inter-annual variability of biogeochemical fluxes closely correlated with sea ice cover and primary productivity. The comparison between the samples collected at mooring A and B in 2008 highlighted the main differences between these two sites. Particle fluxes at Mooring A, located in a polynia area, are higher than mooring B ones and they happen about a month before. In the mooring B area it has been possible to correlate the particles fluxes to the ice concentration anomalies and with the atmospheric changes in response to El Niño Southern Oscillations. In 1996 and 1999, years subjected to La Niña, the concentrations of sea ice in this area have been less than in 1998, year subjected to El Niño. Inverse correlation was found for 2005 and 2008. In the mooring A area significant differences in mass and biogenic fluxes during 2005 and 2008 has been recorded. This allowed to underline the high variability of lateral advection processes and to connect them to the physical forcing.