12 resultados para Obstructive sleep apnea

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The arousal scoring in Obstructive Sleep Apnea Syndrome (OSAS) is important to clarify the impact of the disease on sleep but the currently applied American Academy of Sleep Medicine (AASM) definition may underestimate the subtle alterations of sleep. The aims of the present study were to evaluate the impact of respiratory events on cortical and autonomic arousal response and to quantify the additional value of cyclic alternating pattern (CAP) and pulse wave amplitude (PWA) for a more accurate detection of respiratory events and sleep alterations in OSAS patients. A retrospective revision of 19 polysomnographic recordings of OSAS patients was carried out. Analysis was focused on quantification of apneas (AP), hypopneas (H) and flow limitation (FL) events, and on investigation of cerebral and autonomic activity. Only 41.1% of FL events analyzed in non rapid eye movement met the AASM rules for the definition of respiratory event-related arousal (RERA), while 75.5% of FL events ended with a CAP A phase. The dual response (EEG-PWA) was the most frequent response for all subtypes of respiratory event with a progressive reduction from AP to H and FL. 87.7% of respiratory events with EEG activation showed also a PWA drop and 53,4% of the respiratory events without EEG activation presented a PWA drop. The relationship between the respiratory events and the arousal response is more complex than that suggested by the international classification. In the estimation of the response to respiratory events, the CAP scoring and PWA analysis can offer more extensive information compared to the AASM rules. Our data confirm also that the application of PWA scoring improves the detection of respiratory events and could reduce the underestimation of OSAS severity compared to AASM arousal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obstructive sleep apnoea/hypopnoea syndrome (OSAHS) is the periodic reduction or cessation of airflow during sleep. The syndrome is associated whit loud snoring, disrupted sleep and observed apnoeas. Surgery aims to alleviate symptoms of daytime sleepiness, improve quality of life and reduce the signs of sleep apnoea recordered by polysomnography. Surgical intervention for snoring and OSAHS includes several procedures, each designed to increase the patency of the upper airway. Procedures addressing nasal obstruction include septoplasty, turbinectomy, and radiofrequency ablation (RF) of the turbinates. Surgical procedures to reduce soft palate redundancy include uvulopalatopharyngoplasty with or without tonsillectomy, uvulopalatal flap, laser-assisted uvulopalatoplasty, and RF of the soft palate. More significant, however, particularly in cases of severe OSA, is hypopharyngeal or retrolingual obstruction related to an enlarged tongue, or more commonly due to maxillomandibular deficiency. Surgeries in these cases are aimed at reducing the bulk of the tongue base or providing more space for the tongue in the oropharynx so as to limit posterior collapse during sleep. These procedures include tongue-base suspension, genioglossal advancement, hyoid suspension, lingualplasty, and maxillomandibular advancement. We reviewed 269 patients undergoing to osas surgery at the ENT Department of Forlì Hospital in the last decade. Surgery was considered a success if the postoperative apnea/hypopnea index (AHI) was less than 20/h. According to the results, we have developed surgical decisional algorithms with the aims to optimize the success of these procedures by identifying proper candidates for surgery and the most appropriate surgical techniques. Although not without risks and not as predictable as positive airway pressure therapy, surgery remains an important treatment option for patients with obstructive sleep apnea (OSA), particularly for those who have failed or cannot tolerate positive airway pressure therapy. Successful surgery depends on proper patient selection, proper procedure selection, and experience of the surgeon. The intended purpose of medical algorithms is to improve and standardize decisions made in the delivery of medical care, assist in standardizing selection and application of treatment regimens, to reduce potential introduction of errors. Nasal Continuous Positive Airway Pressure (nCPAP) is the recommended therapy for patients with moderate to severe OSAS. Unfortunately this treatment is not accepted by some patient, appears to be poorly tolerated in a not neglible number of subjects, and the compliance may be critical, especially in the long term if correctly evaluated with interview as well with CPAP smart cards analysis. Among the alternative options in Literature, surgery is a long time honoured solution. However until now no clear scientific evidence exists that surgery can be considered a really effective option in OSAHS management. We have design a randomized prospective study comparing MMA and a ventilatory device (Autotitrating Positive Airways Pressure – APAP) in order to understand the real effectiveness of surgery in the management of moderate to severe OSAS. Fifty consecutive previously full informed patients suffering from severe OSAHS were enrolled and randomised into a conservative (APAP) or surgical (MMA) arm. Demographic, biometric, PSG and ESS profiles of the two group were statistically not significantly different. One year after surgery or continuous APAP treatment both groups showed a remarkable improvement of mean AHI and ESS; the degree of improvement was not statistically different. Provided the relatively small sample of studied subjects and the relatively short time of follow up, MMA proved to be in our adult and severe OSAHS patients group a valuable alternative therapeutical tool with a success rate not inferior to APAP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cardiovascular regulation undergoes wide changes in the different states of sleepwake cycle. In particular, the relationship between spontaneous fluctuations in heart period and arterial pressure clearly shows differences between the two sleep states. In non rapid-eye-movement sleep, heart rhythm is under prevalent baroreflex control, whereas in rapid-eye-movement sleep central autonomic commands prevail (Zoccoli et al., 2001). Moreover, during rapid-eye-movement sleep the cardiovascular variables show wide fluctuations around their mean value. In particular, during rapid-eyemovement sleep, the arterial pressure shows phasic hypertensive events which are superimposed upon the tonic level of arterial pressure. These phasic increases in arterial pressure are accompanied by an increase in heart rate (Sei & Morita, 1996; Silvani et al., 2005). Thus, rapid-eye-movement sleep may represent an “autonomic stress test” for the cardiovascular system, able to unmask pathological patterns of cardiovascular regulation (Verrier et al. 2005), but this hypothesis has never been tested experimentally. The aim of this study was to investigate whether rapid-eye-movement sleep may reveal derangements in central autonomic cardiovascular control in an experimental model of essential hypertension. The study was performed in Spontaneously Hypertensive Rats, which represent the most widely used model of essential hypertension, and allow full control of genetic and environmental confounding factors. In particular, we analyzed the cardiovascular, electroencephalogram, and electromyogram changes associated with phasic hypertensive events during rapid-eyemovement sleep in Spontaneously Hypertensive Rats and in their genetic Wistar Kyoto control strain. Moreover, we studied also a group of Spontaneously Hypertensive Rats made phenotypically normotensive by means of a chronic treatment with an angiotensin converting enzyme inhibitor, the Enalapril maleate, from the age of four weeks to the end of the experiment. All rats were implanted with electrodes for electroencephalographic and electromyographic recordings and with an arterial catheter for arterial pressure measurement. After six days for postoperative recovery, the rats were studied for five days, at an age of ten weeks.The study indicated that the peak of mean arterial pressure increase during the phasic hypertensive events in rapid-eye-movement sleep did not differ significantly between Spontaneously Hypertensive Rats and Wistar Kyoto rats, while on the other hand Spontaneously Hypertensive Rats showed a reduced increase in the frequency of theta rhythm and a reduced tachicardia with respect to Wistar Kyoto rats. The same pattern of changes in mean arterial pressure, heart period, and theta frequency was observed between Spontaneously Hypertensive Rats and Spontaneously Hypertensive Rats treated with Enalapril maleate. Spontaneously Hypertensive Rats do not differ from Wistar Kyoto rats only in terms of arterial hypertension, but also due to multiple unknown genetic differences. Spontaneously Hypertensive Rats were developed by selective breeding of Wistar Kyoto rats based only on the level of arterial pressure. However, in this process, multiple genes possibly unrelated to hypertension may have been selected together with the genetic determinants of hypertension (Carley et al., 2000). This study indicated that Spontaneously Hypertensive Rats differ from Wistar Kyoto rats, but not from Spontaneously Hypertensive Rats treated with Enalapril maleate, in terms of arterial pH and theta frequency. This feature may be due to genetic determinants unrelated to hypertension. In sharp contrast, the persistence of differences in the peak of heart period decrease and the peak of theta frequency increase during phasic hypertensive events between Spontaneously Hypertensive Rats and Spontaneously Hypertensive Rats treated with Enalapril maleate demonstrates that the observed reduction in central autonomic control of the cardiovascular system in Spontaneously Hypertensive Rats is not an irreversible consequence of inherited genetic determinants. Rather, the comparison between Spontaneously Hypertensive Rats and Spontaneously Hypertensive Rats treated with Enalapril maleate indicates that the observed differences in central autonomic control are the result of the hypertension per se. This work supports the view that the study of cardiovascular regulation in sleep provides fundamental insight on the pathophysiology of hypertension, and may thus contribute to the understanding of this disease, which is a major health problem in European countries (Wolf-Maier et al., 2003) with its burden of cardiac, vascular, and renal complications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To document the existence of a relationship between apnea of prematurity (AOP) and gastroesophageal reflux (GER) in preterm infants. Setting: One Neonatal Intensive Care Unit Patients: Twenty-six preterm infants (gestational age<32 weeks) with recurrent apneas. Intervention: Simultaneous and synchronized recording of polysomnography and pH-impedance monitoring (pH-MII). Polysomnography detects and characterizes apneas, by recording of breathing movement, nasal airflow, electrocardiogram, pulse oximeter saturation. pH-MII is the state-of-theart methodology for GER detection in preterm newborns. Main outcome measures: Relationship between AOP and GER, which were considered temporally related if both started within 30 seconds of each other. Results: One-hundred-fifty-four apneas out of 1136 were temporally related to GER. The frequency of apnea during the one-minute time around the onset of GER was significantly higher than the one detected in the GER-free period (p=0.03). Furthermore, the frequency of apnea in the 30 seconds after GER (GER-triggered apneas) was greater than that detected in the 30 seconds before (p=0.01). A great inter-individual variability was documented in the proportion of GERtriggered apneas. A strong correlation between total number of apneas and the difference between apneas detected 30 seconds after and before GER was found (p=0.034). Conclusions: Our data show that a variable rate of apneas can be triggered by GER in very preterm infant. Further studies are needed to recognise clinical features which identify those patients who are more susceptible to GER-triggered apneas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. Blood pressure (BP) physiologically has higher and lower values during the active and rest period, respectively. Subjects failing to show the appropriate BP decrease (10-20%) on passing form diurnal activity to nocturnal rest and sleep have increased risk of target organ damage at the cardiac, vascular and cerebrovascular levels. Hypocretin (HCRT) releasing neurons, mainly located in the lateral hypothalamus, project widely to the central nervous system. Thus HCRT neurons are involved in several autonomic functions, including BP regulation. HCRT neurons also play a key role in wake-sleep cycle regulation, the lack of which becomes evident in HCRT-deficient narcoleptic patients. I investigated whether chronic lack of HCRT signaling alters BP during sleep in mouse models of narcolepsy. Methods. The main study was performed on HCRT-ataxin3 transgenic mice (TG) with selective post-natal ablation of HCRT neurons, HCRT gene knockout mice (KO) with preserved HCRT neurons, and Wild-Type control mice (WT) with identical genetic background. Experiments where replicated on TG and WT mice with hybrid genetic background (hTG and hWT, respectively). Mice were implanted with a telemetric pressure transducer (TA11PA-C10, DSI) and electrodes for discriminating wakefulness (W), rapid-eye-movement sleep (REMS) and non-REMS (NREMS). Signals were recorded for 3 days. Mean BP values were computed in each wake-sleep state and analyzed by ANOVA and t-test with significance at p<0.05. Results. The decrease in BP between either NREMS or REMS and W was significantly blunted in TG and KO with respect to WT as well as in hTG with respect to hWT. Conclusions. Independently from the genetic background, chronic HCRT deficiency leads to a decreased BP difference between W and sleep potentially adverse in narcoleptic subjects. These data suggest that HCRT play an important role in the sleep-dependent cardiovascular control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Objectives: Sleep has been shown to enhance creativity, but the reason for this enhancement is not entirely known. There are several different physiological states associated with sleep. In addition to rapid (REM) and non-rapid eye movement (NREM) sleep, NREM sleep can be broken down into Stages (1-4) that are characterized by the degree of EEG slow wave activity. In addition, during NREM sleep there are transient but cyclic alternating patterns (CAP) of EEG activity and these CAPs can also be divided into three subtypes (A1-A3) according to speed of the EEG waves. Differences in CAP ratios have been previously linked to cognitive performances. The purpose of this study was to learn the relationship CAP activity during sleep and creativity. Methods: The participants were 8 healthy young adults (4 women), who underwent 3 consecutive nights of polysomnographic recording and took the Abbreviated Torrance Test for Adults (ATTA) on the 2 and 3rd mornings after the recordings. Results: There were positive correlations between Stage 1 of NREM sleep and some measures of creativity such as fluency (R= .797; p=.029) and flexibility ( R=.43; p=.002), between Stage 4 of Non-REM sleep and originality (R= .779; p=.034) and a global measure of figural creativity (R= .758; p=.040). There was also a negative correlation between REM sleep and originality (R= -.827; p= .042) . During NREM sleep the CAP rate, which in young people is primarily the A1 subtype, also correlated with originality (R= .765; p =.038). Conclusions: NREM sleep is associated with low levels of cortical arousal and low cortical arousal may enhance the ability of people to access to the remote associations that are critical for creative innovations. In addition, A1 CAP activity reflects frontal activity and the frontal lobes are important for divergent thinking, also a critical aspect of creativity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypocretin 1 and 2 (HCRT, also called Orexin A and B) are neuropeptides released by neurons in the lateral hypothalamus. HCRT neurons widely project to the entire neuroaxis. HCRT neurons have been reported to participate in various hypothalamic physiological processes including cardiovascular functions, wake-sleep cycle, and they may also influence metabolic rate and the regulation of body temperature. HCRT neurons are lost in narcolepsy, a rare neurological disorder, characterized by excessive daytime sleepiness, cataplexy, sleep fragmentation and occurrence of sleep-onset rapid-eye-movement episodes. We investigated whether HCRT neurons mediate the sleep-dependent cardiovascular adaptations to changes in ambient temperature (Ta). HCRT-ataxin3 transgenic mice with genetic ablation of HCRT neurons (n = 11) and wild-type controls (n = 12) were instrumented with electrodes for sleep scoring and a telemetric blood pressure (BP) transducer (DSI, Inc.). Simultaneous sleep and BP recordings were performed on mice undisturbed and freely-behaving at 20 °C, 25 °C, and 30 °C for 48 hours at each Ta. Analysis of variance of BP indicated a significance of the main effects of wake-sleep state and Ta, their interaction effect, and the wake-sleep state x mouse strain interaction effect. BP increased with decreasing Ta. This effect of Ta on BP was significantly lower in rapid-eye-movement sleep (REMS) than either in non-rapid-eye-movement sleep (NREMS) or wakefulness regardless of the mouse strain. BP was higher in wakefulness than either in NREMS or REMS. This effect of sleep on BP was significantly reduced in mice lacking HCRT neurons at each Ta, particularly during REMS. These data suggest that HCRT neurons play a critical role in mediating the effects of sleep but not those of Ta on BP in mice. HCRT neurons may thus be part of the central neural pathways which mediate the phenomenon of blood pressure dipping on passing from wakefulness to sleep.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asthma and chronic obstructive pulmonary disease (COPD) are two distinct lung diseases with distinctive clinical and inflammatory features. A proportion of asthmatic patients experience a fixed airflow obstruction that persists despite optimal pharmacologic treatment for reasons that are still largely unknown. We found that patients with asthma and COPD sharing a similar fixed airflow obstruction have an increased lung function decline and frequency of exacerbations. Nevertheless, the decline in lung function is associated with specific features of the underlying inflammation. Airway inflammation increases during asthma exacerbation and disease severity. Less is known about the correlations between symptoms and airway inflammation in COPD patients. We found that there is no correlation between symptoms and lung function in COPD patients. Nevertheless symptoms changes are associated with specific inflammatory changes: cough is associated with an increase of sputum neutrophils in COPD, dyspnoea is associated with an increase of eosinophils. The mechanisms of this correlation remain unknown. Neutrophils inflammation is associated with bacterial colonization in stable COPD. Is not known whether inhaled corticosteroids might facilitate bacterial colonization in COPD patients. We found that the use of inhaled corticosteroids in COPD patients is associated with an increase of airway bacterial load and with an increase of airway pathogen detection. Bacterial and viral infections are the main causes of COPD and asthma exacerbations. Impaired innate immune responses to rhinovirus infections have been described in adult patients with atopic asthma. Whether this impaired immune condition is present early in life and whether is modulated by a concomitant atopic condition is currently unknown. We found that deficient innate immune responses to rhinovirus infection are already present early in life in atopic patients without asthma and in asthmatic subjects. These findings generalize the scenario of increased susceptibility to viral infections to other Th2 oriented conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this PhD thesis 3 projects were addressed focusing on the melanopsin retinal ganglion cells (mRGCs) system and its relevance for circadian rhythms and sleep in neurodegeneration. The first project was aimed at completing the characterization of mRGCs system in hereditary optic neuropathies (LHON and DOA). We confirmed that mRGCs are relatively spared also in post-mortem retinal specimens of a DOA case and pupillometric evaluation of LHON patients showed preservation of the pupillary light reflex, with attenuated responses compared to controls. Cell studies failed to indicate a protective role exerted by melanopsin itself. The second project was aimed at characterizing the possible occurrence of optic neuropathy and rest-activity circadian rhythm dysfunction in Alzheimer (AD) and Parkinson disease (PD), as well as, at histological level, the possible involvement of mRGCs in AD. OCT studies demonstrated a subclinical optic neuropathy in both AD and PD patients, with a different pattern involving the superior and nasal quadrants in AD and the temporal quadrant in PD. Actigraphic studies demonstrated a tendency towards an increased intradaily variability (IV) and reduced relative amplitude (RA) of rest-activity circadian rhythm in AD and a significant increased IV a reduced RA in PD. Immunohistochemical analysis of post-mortem retinal specimens and optic nerve cross-sections of neuropathologically confirmed AD cases demonstrated a significant loss of mRGCs and a nearly significant loss of axons in AD compared to controls. The mRGCs were affected in AD independently from age and magnitude of axonal loss. Overall these results suggest a role of the mRGCs system in the pathogenesis of circadian dysfunction in AD. The third project was aimed at evaluating the possible association between a single nucleotide polymorphism of the OPN4 gene and chronotype or SAD, failing to find any significant association with chronotype, but showing a non-significant increment of TT genotype in SAD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity often predisposes to coronary heart disease, heart failure, and sudden death. Also, several studies suggest a reciprocal enhancing interaction between obesity and sleep curtailment. Aim of the present study was to go deeper in the understanding of sleep and cardiovascular regulation in an animal model of diet-induced obesity (DIO). According to this, Wake-Sleep (W-S) regulation, and W-S dependent regulation of cardiovascular and metabolic/thermoregulatory function was studied in DIO rats, under normal laboratory conditions and during sleep deprivation and the following recovery period, enhancing either wake or sleep, respectively. After 8 weeks of the delivery of a hypercaloric (HC) diet, treated animals were heavier than those fed a normocaloric (NC) diet (NC: 441 ±17g; HC: 557±17g). HC rats slept more than NC ones during the activity period (Dark) of the normal 12h:12h light-dark (LD) cycle (Wake: 67.3±1.2% and 57.2 ±1.6%; NREM sleep (NREMS): 26.8±1.0% and 34.0±1.4%; REM sleep (REMS): 5.7±0. 6% and 8.6±0.7%; for NC and HC, respectively; p<0.05 for all). HC rats were hypertensive throughout the W-S states, as shown by the mean arterial blood pressure values across the 24-h period (Wake: 90.0±5.3 and 97.3±1.3; NREMS: 85.1±5.5 and 92.2±1.2; REMS: 87.2±4.5 and 96.5±1.1, mmHg for NC and HC, respectively; p<0.05 for all). Also, HC rats appeared to be slightly bradycardic compared to NC ones (Wake: 359.8±9.3 and 352.4±7.7; NREMS: 332.5±10.1 and 328.9±5.4; REMS: 338.5±9.3 and 334.4±5.8; bpm for NC and HC, respectively; p<0.05 for Wake). In HC animals, sleep regulation was not apparently altered during the sleep rebound observed in the recovery period following sleep deprivation, although REMS rebound appeared to be quicker in NC animals. In conclusion, these results indicate that in the rat obesity interfere with W-S and cardiovascular regulation and that DIO rats are suitable for further studies aimed at a better understanding of obesity comorbidities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim of this study is to describe the possible diagnostic value of sleep disturbances in the differential diagnosis of neurodegenerative diseases characterized by parkinsonism at onset. 42 consecutive patients with parkinsonian features and disease duration up to 3 years were included in the BO-ProPark study. Each patient was evaluated twice, at baseline (T0) and 16 months later (T1). Patients were diagnosed as Parkinson disease (PD, 27 patients), PD plus (PD with cognitive impairment/dementia or dysautonomia, 4 patients) and parkinsonian syndrome (PS, 11 patients). All patients underwent a full night video-polysomnography scored by a neurologist blinded to the clinical diagnosis. Sleep efficiency and total sleep time were reduced in all patients; wake after sleep onset was higher in patients with atypical parkinsonisms than in PD patients. No significant differences between groups of patients were detected in other sleep parameters. The mean percentage of epochs with enhanced tonic muscle EMG activity during REM sleep was higher in PD plus and PS than in PD. No difference in phasic muscle EMG activity during REM sleep was seen between the two groups. REM behaviour disorder was more frequent in PD plus and PS than in PD patients. Our data suggest that REM sleep motor control is more frequently impaired at disease onset in patients with PS and PD plus compared to PD patients. The presence of RBD or an enhanced tonic muscle EMG activity in a patient with recent onset parkinsonian features should suggest a diagnosis of atypical parkinsonism, rather than PD. More data are needed to establish the diagnostic value of these features in the differential diagnosis of parkinsonisms. The evaluation of sleep disorders may be a useful tool in the differential diagnosis of parkinsonism at onset.