9 resultados para Object-oriented image analysis
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The subject of this doctoral dissertation concerns the definition of a new methodology for the morphological and morphometric study of fossilized human teeth, and therefore strives to provide a contribution to the reconstruction of human evolutionary history that proposes to extend to the different species of hominid fossils. Standardized investigative methodologies are lacking both regarding the orientation of teeth subject to study and in the analysis that can be carried out on these teeth once they are oriented. The opportunity to standardize a primary analysis methodology is furnished by the study of certain early Neanderthal and preneanderthal molars recovered in two caves in southern Italy [Grotta Taddeo (Taddeo Cave) and Grotta del Poggio (Poggio Cave), near Marina di Camerata, Campania]. To these we can add other molars of Neanderthal and modern man of the upper Paleolithic era, specifically scanned in the paleoanthropology laboratory of the University of Arkansas (Fayetteville, Arkansas, USA), in order to increase the paleoanthropological sample data and thereby make the final results of the analyses more significant. The new analysis methodology is rendered as follows: 1. Standardization of an orientation system for primary molars (superior and inferior), starting from a scan of a sample of 30 molars belonging to modern man (15 M1 inferior and 15 M1 superior), the definition of landmarks, the comparison of various systems and the choice of a system of orientation for each of the two dental typologies. 2. The definition of an analysis procedure that considers only the first 4 millimeters of the dental crown starting from the collar: 5 sections parallel to the plane according to which the tooth has been oriented are carried out, spaced 1 millimeter between them. The intention is to determine a method that allows for the differentiation of fossilized species even in the presence of worn teeth. 3. Results and Conclusions. The new approach to the study of teeth provides a considerable quantity of information that can better be evaluated by increasing the fossil sample data. It has been demonstrated to be a valid tool in evolutionary classification that has allowed (us) to differentiate the Neanderthal sample from that of modern man. In a particular sense the molars of Grotta Taddeo, which up until this point it has not been possible to determine with exactness their species of origin, through the present research they are classified as Neanderthal.
Resumo:
During the last few years, several methods have been proposed in order to study and to evaluate characteristic properties of the human skin by using non-invasive approaches. Mostly, these methods cover aspects related to either dermatology, to analyze skin physiology and to evaluate the effectiveness of medical treatments in skin diseases, or dermocosmetics and cosmetic science to evaluate, for example, the effectiveness of anti-aging treatments. To these purposes a routine approach must be followed. Although very accurate and high resolution measurements can be achieved by using conventional methods, such as optical or mechanical profilometry for example, their use is quite limited primarily to the high cost of the instrumentation required, which in turn is usually cumbersome, highlighting some of the limitations for a routine based analysis. This thesis aims to investigate the feasibility of a noninvasive skin characterization system based on the analysis of capacitive images of the skin surface. The system relies on a CMOS portable capacitive device which gives 50 micron/pixel resolution capacitance map of the skin micro-relief. In order to extract characteristic features of the skin topography, image analysis techniques, such as watershed segmentation and wavelet analysis, have been used to detect the main structures of interest: wrinkles and plateau of the typical micro-relief pattern. In order to validate the method, the features extracted from a dataset of skin capacitive images acquired during dermatological examinations of a healthy group of volunteers have been compared with the age of the subjects involved, showing good correlation with the skin ageing effect. Detailed analysis of the output of the capacitive sensor compared with optical profilometry of silicone replica of the same skin area has revealed potentiality and some limitations of this technology. Also, applications to follow-up studies, as needed to objectively evaluate the effectiveness of treatments in a routine manner, are discussed.
Resumo:
Generic programming is likely to become a new challenge for a critical mass of developers. Therefore, it is crucial to refine the support for generic programming in mainstream Object-Oriented languages — both at the design and at the implementation level — as well as to suggest novel ways to exploit the additional degree of expressiveness made available by genericity. This study is meant to provide a contribution towards bringing Java genericity to a more mature stage with respect to mainstream programming practice, by increasing the effectiveness of its implementation, and by revealing its full expressive power in real world scenario. With respect to the current research setting, the main contribution of the thesis is twofold. First, we propose a revised implementation for Java generics that greatly increases the expressiveness of the Java platform by adding reification support for generic types. Secondly, we show how Java genericity can be leveraged in a real world case-study in the context of the multi-paradigm language integration. Several approaches have been proposed in order to overcome the lack of reification of generic types in the Java programming language. Existing approaches tackle the problem of reification of generic types by defining new translation techniques which would allow for a runtime representation of generics and wildcards. Unfortunately most approaches suffer from several problems: heterogeneous translations are known to be problematic when considering reification of generic methods and wildcards. On the other hand, more sophisticated techniques requiring changes in the Java runtime, supports reified generics through a true language extension (where clauses) so that backward compatibility is compromised. In this thesis we develop a sophisticated type-passing technique for addressing the problem of reification of generic types in the Java programming language; this approach — first pioneered by the so called EGO translator — is here turned into a full-blown solution which reifies generic types inside the Java Virtual Machine (JVM) itself, thus overcoming both performance penalties and compatibility issues of the original EGO translator. Java-Prolog integration Integrating Object-Oriented and declarative programming has been the subject of several researches and corresponding technologies. Such proposals come in two flavours, either attempting at joining the two paradigms, or simply providing an interface library for accessing Prolog declarative features from a mainstream Object-Oriented languages such as Java. Both solutions have however drawbacks: in the case of hybrid languages featuring both Object-Oriented and logic traits, such resulting language is typically too complex, thus making mainstream application development an harder task; in the case of library-based integration approaches there is no true language integration, and some “boilerplate code” has to be implemented to fix the paradigm mismatch. In this thesis we develop a framework called PatJ which promotes seamless exploitation of Prolog programming in Java. A sophisticated usage of generics/wildcards allows to define a precise mapping between Object-Oriented and declarative features. PatJ defines a hierarchy of classes where the bidirectional semantics of Prolog terms is modelled directly at the level of the Java generic type-system.
Resumo:
Biomedicine is a highly interdisciplinary research area at the interface of sciences, anatomy, physiology, and medicine. In the last decade, biomedical studies have been greatly enhanced by the introduction of new technologies and techniques for automated quantitative imaging, thus considerably advancing the possibility to investigate biological phenomena through image analysis. However, the effectiveness of this interdisciplinary approach is bounded by the limited knowledge that a biologist and a computer scientist, by professional training, have of each other’s fields. The possible solution to make up for both these lacks lies in training biologists to make them interdisciplinary researchers able to develop dedicated image processing and analysis tools by exploiting a content-aware approach. The aim of this Thesis is to show the effectiveness of a content-aware approach to automated quantitative imaging, by its application to different biomedical studies, with the secondary desirable purpose of motivating researchers to invest in interdisciplinarity. Such content-aware approach has been applied firstly to the phenomization of tumour cell response to stress by confocal fluorescent imaging, and secondly, to the texture analysis of trabecular bone microarchitecture in micro-CT scans. Third, this approach served the characterization of new 3-D multicellular spheroids of human stem cells, and the investigation of the role of the Nogo-A protein in tooth innervation. Finally, the content-aware approach also prompted to the development of two novel methods for local image analysis and colocalization quantification. In conclusion, the content-aware approach has proved its benefit through building new approaches that have improved the quality of image analysis, strengthening the statistical significance to allow unveiling biological phenomena. Hopefully, this Thesis will contribute to inspire researchers to striving hard for pursuing interdisciplinarity.
Resumo:
This thesis deals with the study of optimal control problems for the incompressible Magnetohydrodynamics (MHD) equations. Particular attention to these problems arises from several applications in science and engineering, such as fission nuclear reactors with liquid metal coolant and aluminum casting in metallurgy. In such applications it is of great interest to achieve the control on the fluid state variables through the action of the magnetic Lorentz force. In this thesis we investigate a class of boundary optimal control problems, in which the flow is controlled through the boundary conditions of the magnetic field. Due to their complexity, these problems present various challenges in the definition of an adequate solution approach, both from a theoretical and from a computational point of view. In this thesis we propose a new boundary control approach, based on lifting functions of the boundary conditions, which yields both theoretical and numerical advantages. With the introduction of lifting functions, boundary control problems can be formulated as extended distributed problems. We consider a systematic mathematical formulation of these problems in terms of the minimization of a cost functional constrained by the MHD equations. The existence of a solution to the flow equations and to the optimal control problem are shown. The Lagrange multiplier technique is used to derive an optimality system from which candidate solutions for the control problem can be obtained. In order to achieve the numerical solution of this system, a finite element approximation is considered for the discretization together with an appropriate gradient-type algorithm. A finite element object-oriented library has been developed to obtain a parallel and multigrid computational implementation of the optimality system based on a multiphysics approach. Numerical results of two- and three-dimensional computations show that a possible minimum for the control problem can be computed in a robust and accurate manner.
Resumo:
Our research takes place in the context of a discipline kwown as Communication for Development, sited inside the field of Communication for Social Change, characterized by the use of interpersonal ad mass communication theories and tools, applyied to international development cooperation. Our study aims at pointing out a change of paradigm in this field: our object is Public Administration’s communication, therefore, what we suggest is a shift from Communication for Development, to Development Communication. The object of our study, hence, becomes the discourse itself, in its double action of representation and construction of reality. In particular, we are interested in the discourse’s tribute to the creation of a collective immagination, wich is the perspective towards which we have oriented the analysis, through a structuralist semoitics-based methodology integrated with a socio-semiotic approach. Taking into consideartion the fact that in our contemporary society (that is to say a ‘Western’ and ‘First World’ society), the internet is a crucial public space for the mediation and the management of collective immagination, we chose the web sites of Public Bodies which are dedicated to International Cooperation has our analysis corpus. This, due to their symbolic and ideologic significance, as well as for the actual political responsibility we think these web sites should have. The result of our analysis allows us to suggest some discoursive strategies used in the web sites of Public Bodies. In these sites, there is a tendency to shift the discourses around international cooperation from the ideological axis - avoiding in so doing to explicit a political statement about the causes of injustices and un-balances which lead to the necessity of a support in development (i.e. avoiding to mention values such as social justice and democracy while acknowledging socio-economical institutions which contribute to foster underdevelopment on a global scale) -, to the ethical axis, hence referring to moral values concerning the private sphere (human solidarity and charity), which is delegated mainly to non governamental associations.
Resumo:
Mainstream hardware is becoming parallel, heterogeneous, and distributed on every desk, every home and in every pocket. As a consequence, in the last years software is having an epochal turn toward concurrency, distribution, interaction which is pushed by the evolution of hardware architectures and the growing of network availability. This calls for introducing further abstraction layers on top of those provided by classical mainstream programming paradigms, to tackle more effectively the new complexities that developers have to face in everyday programming. A convergence it is recognizable in the mainstream toward the adoption of the actor paradigm as a mean to unite object-oriented programming and concurrency. Nevertheless, we argue that the actor paradigm can only be considered a good starting point to provide a more comprehensive response to such a fundamental and radical change in software development. Accordingly, the main objective of this thesis is to propose Agent-Oriented Programming (AOP) as a high-level general purpose programming paradigm, natural evolution of actors and objects, introducing a further level of human-inspired concepts for programming software systems, meant to simplify the design and programming of concurrent, distributed, reactive/interactive programs. To this end, in the dissertation first we construct the required background by studying the state-of-the-art of both actor-oriented and agent-oriented programming, and then we focus on the engineering of integrated programming technologies for developing agent-based systems in their classical application domains: artificial intelligence and distributed artificial intelligence. Then, we shift the perspective moving from the development of intelligent software systems, toward general purpose software development. Using the expertise maturated during the phase of background construction, we introduce a general-purpose programming language named simpAL, which founds its roots on general principles and practices of software development, and at the same time provides an agent-oriented level of abstraction for the engineering of general purpose software systems.
Resumo:
Modern software systems, in particular distributed ones, are everywhere around us and are at the basis of our everyday activities. Hence, guaranteeing their cor- rectness, consistency and safety is of paramount importance. Their complexity makes the verification of such properties a very challenging task. It is natural to expect that these systems are reliable and above all usable. i) In order to be reliable, compositional models of software systems need to account for consistent dynamic reconfiguration, i.e., changing at runtime the communication patterns of a program. ii) In order to be useful, compositional models of software systems need to account for interaction, which can be seen as communication patterns among components which collaborate together to achieve a common task. The aim of the Ph.D. was to develop powerful techniques based on formal methods for the verification of correctness, consistency and safety properties related to dynamic reconfiguration and communication in complex distributed systems. In particular, static analysis techniques based on types and type systems appeared to be an adequate methodology, considering their success in guaranteeing not only basic safety properties, but also more sophisticated ones like, deadlock or livelock freedom in a concurrent setting. The main contributions of this dissertation are twofold. i) On the components side: we design types and a type system for a concurrent object-oriented calculus to statically ensure consistency of dynamic reconfigurations related to modifications of communication patterns in a program during execution time. ii) On the communication side: we study advanced safety properties related to communication in complex distributed systems like deadlock-freedom, livelock- freedom and progress. Most importantly, we exploit an encoding of types and terms of a typical distributed language, session π-calculus, into the standard typed π- calculus, in order to understand their expressive power.
Resumo:
Quantitative imaging in oncology aims at developing imaging biomarkers for diagnosis and prediction of cancer aggressiveness and therapy response before any morphological change become visible. This Thesis exploits Computed Tomography perfusion (CTp) and multiparametric Magnetic Resonance Imaging (mpMRI) for investigating diverse cancer features on different organs. I developed a voxel-based image analysis methodology in CTp and extended its use to mpMRI, for performing precise and accurate analyses at single-voxel level. This is expected to improve reproducibility of measurements and cancer mechanisms’ comprehension and clinical interpretability. CTp has not entered the clinical routine yet, although its usefulness in the monitoring of cancer angiogenesis, due to different perfusion computing methods yielding unreproducible results. Instead, machine learning applications in mpMRI, useful to detect imaging features representative of cancer heterogeneity, are mostly limited to clinical research, because of results’ variability and difficult interpretability, which make clinicians not confident in clinical applications. In hepatic CTp, I investigated whether, and under what conditions, two widely adopted perfusion methods, Maximum Slope (MS) and Deconvolution (DV), could yield reproducible parameters. To this end, I developed signal processing methods to model the first pass kinetics and remove any numerical cause hampering the reproducibility. In mpMRI, I proposed a new approach to extract local first-order features, aiming at preserving spatial reference and making their interpretation easier. In CTp, I found out the cause of MS and DV non-reproducibility: MS and DV represent two different states of the system. Transport delays invalidate MS assumptions and, by correcting MS formulation, I have obtained the voxel-based equivalence of the two methods. In mpMRI, the developed predictive models allowed (i) detecting rectal cancers responding to neoadjuvant chemoradiation showing, at pre-therapy, sparse coarse subregions with altered density, and (ii) predicting clinically significant prostate cancers stemming from the disproportion between high- and low- diffusivity gland components.