3 resultados para ORGANIC CONTAMINANTS
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Pollution of water bodies is one of the most common environmental problems today. Organic pollutants are one of the main drawbacks in this natural resource, among which the following stand out long-lived dyes, pharmaceuticals, and pesticides. This research aims at obtaining nanocomposites based on polycaprolactone-chitosan (PCL-CS) electrospun nanofibers (NFs) containing TiO2 nanoparticles (NPs) for the adsorption and photocatalytic degradation of organic pollutants, using Rhodamine B as a model. The fabricated hybrid materials were characterized by FT-IR, TGA, DSC, SEM, TEM, tensile properties, and the contact angle of water drops. The photoactivity of the NFs was investigated using a batch-type system by following UV-Vis absorbance and fluorescence of rhodamine B (RhB). For this purpose, TiO2NPs were successfully ex-situ incorporated into the polymer matrix promoting good mechanical properties and higher hydrophilicity of the material. The results showed that CS in the NFs increased the absorption and degradation of RhB by the TiO2NPs. CS attracted the pollutant molecules to the active sites vicinity of TiO2NPs, favoring initial adsorption and degradation. In other words, a bait-hook-and-destroy effect was evidenced. It also was demonstrated that the sensitization of TiO2 by organic dyes (e.g., perylene derivative) considerably improves the photocatalytic activity under visible radiation, allowing the use of low amounts of TiO2. (≈0.05 g/1 g of fiber). Hence, the current study is expected to contribute with an environmentally friendly green alternative solution.
Resumo:
Chlorinated solvents are the most ubiquitous organic contaminants found in groundwater since the last five decades. They generally reach groundwater as Dense Non-Aqueous Phase Liquid (DNAPL). This phase can migrate through aquifers, and also through aquitards, in ways that aqueous contaminants cannot. The complex phase partitioning to which chlorinated solvent DNAPLs can undergo (i.e. to the dissolved, vapor or sorbed phase), as well as their transformations (e.g. degradation), depend on the physico-chemical properties of the contaminants themselves and on features of the hydrogeological system. The main goal of the thesis is to provide new knowledge for the future investigations of sites contaminated by DNAPLs in alluvial settings, proposing innovative investigative approaches and emphasizing some of the key issues and main criticalities of this kind of contaminants in such a setting. To achieve this goal, the hydrogeologic setting below the city of Ferrara (Po plain, northern Italy), which is affected by scattered contamination by chlorinated solvents, has been investigated at different scales (regional and site specific), both from an intrinsic (i.e. groundwater flow systems) and specific (i.e. chlorinated solvent DNAPL behavior) point of view. Detailed investigations were carried out in particular in one selected test-site, known as “Caretti site”, where high-resolution vertical profiling of different kind of data were collected by means of multilevel monitoring systems and other innovative sampling and analytical techniques. This allowed to achieve a deep geological and hydrogeological knowledge of the system and to reconstruct in detail the architecture of contaminants in relationship to the features of the hosting porous medium. The results achieved in this thesis are useful not only at local scale, e.g. employable to interpret the origin of contamination in other sites of the Ferrara area, but also at global scale, in order to address future remediation and protection actions of similar hydrogeologic settings.
Resumo:
Herbicides are becoming emergent contaminants in Italian surface, coastal and ground waters, due to their intensive use in agriculture. In marine environments herbicides have adverse effects on non-target organisms, as primary producers, resulting in oxygen depletion and decreased primary productivity. Alterations of species composition in algal communities can also occur due to the different sensitivity among the species. In the present thesis the effects of herbicides, widely used in the Northern Adriatic Sea, on different algal species were studied. The main goal of this work was to study the influence of temperature on algal growth in the presence of the triazinic herbicide terbuthylazine (TBA), and the cellular responses adopted to counteract the toxic effects of the pollutant (Chapter 1 and 2). The development of simulation models to be applied in environmental management are needed to organize and track information in a way that would not be possible otherwise and simulate an ecological prospective. The data collected from laboratory experiments were used to simulate algal responses to the TBA exposure at increasing temperature conditions (Chapter 3). Part of the thesis was conducted in foreign countries. The work presented in Chapter 4 was focused on the effect of high light on growth, toxicity and mixotrophy of the ichtyotoxic species Prymnesium parvum. In addition, a mesocosm experiment was conducted in order to study the synergic effect of the pollutant emamectin benzoate with other anthropogenic stressors, such as oil pollution and induced phytoplankton blooms (Chapter 5).