2 resultados para ODONTOGENIC TUMORS

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The term neurofibromatosis (NF) subsumes at least seven different genetic disorders associated by the presence of neurofibromas located in the skin, oral cavity, visceral and skeletal level. As NF1 (Von Recklinghausen disease), one of the most common genetic diseases, can have oral manifestations, dentists have to be aware about pathognomonic features. The thesis’ target is the literature’s review on the NF1 manifestations either systemic or cefalic area and these features’ research in a specimen of 30 patients NF1 affected. NF1 is manifested in the cefalic area locating either in the jaws (isolated neurofibromas, ipoplasia or bone structures absence) or soft tissues (fibromas and neurofibromas located in: cheeck, lips, oral mucosa, tongue, mouth’s floor, gingiva and palate). Frequently, NF1 patients are affected by dental anomalies of position, number and eruption, that determinates the possibility of orthopaedic-orthodontic problems. An increased prevalence of the caries risk and a possible pulpar involvement of neurofibromas is reported. Clinical and radiographical typical signs of the disease and specific indications for the differential diagnosis with other oral pathologies are described (cysts and odontogenic tumors, periapical lesions of endodontic origin and severe parodontitis). The importance of screening programs and periodical follow-ups (biannual dental visits from the age of four years, annual X-ray checks from the age of six) is supported by the high frequency of manifestations at hard and soft tissues level of the cefalic area and by the documented risk of malignant transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perfusion CT imaging of the liver has potential to improve evaluation of tumour angiogenesis. Quantitative parameters can be obtained applying mathematical models to Time Attenuation Curve (TAC). However, there are still some difficulties for an accurate quantification of perfusion parameters due, for example, to algorithms employed, to mathematical model, to patient’s weight and cardiac output and to the acquisition system. In this thesis, new parameters and alternative methodologies about liver perfusion CT are presented in order to investigate the cause of variability of this technique. Firstly analysis were made to assess the variability related to the mathematical model used to compute arterial Blood Flow (BFa) values. Results were obtained implementing algorithms based on “ maximum slope method” and “Dual input one compartment model” . Statistical analysis on simulated data demonstrated that the two methods are not interchangeable. Anyway slope method is always applicable in clinical context. Then variability related to TAC processing in the application of slope method is analyzed. Results compared with manual selection allow to identify the best automatic algorithm to compute BFa. The consistency of a Standardized Perfusion Index (SPV) was evaluated and a simplified calibration procedure was proposed. At the end the quantitative value of perfusion map was analyzed. ROI approach and map approach provide related values of BFa and this means that pixel by pixel algorithm give reliable quantitative results. Also in pixel by pixel approach slope method give better results. In conclusion the development of new automatic algorithms for a consistent computation of BFa and the analysis and definition of simplified technique to compute SPV parameter, represent an improvement in the field of liver perfusion CT analysis.