4 resultados para Nutrition - Fertilizers
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The main aim of this PhD research project was the evaluation of the biological effects of bioactive compounds derived from edible plants, with particular attention on their possibility to counteract oxidative damage and inflammation. After a preliminary study of in vitro antioxidant activity, regarding the modification eventually occurring after home freezing and cooking of edible vegetables, cultured mammalian cells were used as experimental model systems. Soluble extract and essential oils derived from different cultivars of Brassicaceae and Lamiaceae were tested as possible tools for the counteraction of the oxidative damage due to reactive oxygen species (ROS), underlining differences related to cultivar and agronomic techniques. Since accumulating evidence indicates that phytochemicals exhibit several additional properties in complex biological systems, a nutrigenomic approach was used to further explain the biological activity of a green tea extract, and to evidence the anti-inflammatory role of bioactive compounds derived from different foods. Overall, results obtained could contribute to a better understanding of the potential health benefit of plant foods.
Resumo:
The present work provides an ex-post assessment of the UK 5-a-day information campaign where the positive effects of information on consumption levels are disentangled from the potentially conflicting price dynamics. A model-based estimate of the counterfactual (no-intervention) scenario is computed using data from the Expenditure and Food Survey between 2002 and 2006. For this purpose fruit and vegetable demand is modelled employing Quadratic Almost Ideal Demand System (QUAIDS) specification with demographic effects and controlling for potential endogeneity of prices and total food expenditure.
Resumo:
The objective of this thesis was to study the response mechanisms of grapevine to Fe-deficiency and to potential Fe chlorosis prevention strategies. The results show that the presence of bicarbonate in the nutrient solution shifted the activity of PEPC and TCA cycle enzymes and the accumulation/translocation of organic acids in roots of Fe-deprived plants. The rootstock 140 Ruggeri displayed a typical behavior of calcicole plants under bicarbonate stress. The Fe chlorosis susceptible rootstock 101-14 reacted to a prolonged Fe-deficiency reducing the root activity of PEPC and MDH. Noteworthy, it accumulates high levels of citric acid in roots, indicating a low capacity to utilizing, transporting and/or exudating organic acids into the rhizosfere. In contrast, 110 Richter rootstock is capable to maintain an active metabolism of organic acids in roots, accumulating them to a lesser extent than 101-14. Similarly to 101-14, SO4 genotype displays a strong decrease of mechanisms associated to Fe chlorosis tolerance (PEPC and MDH enzymes). Nevertheless it is able to avoid excessive accumulation of citric acid in roots, similar as 110 Richter rootstock. Intercropping with Festuca rubra increased leaf chlorophyll content and net photosynthesis. In addition, intercropping reduces the activity of PEPC in roots, similary to Fe-chelate supply. Applications of NH4+ with nitrification inhibitor prevents efficiently Fe-deficiency, increases chlorophyll content, and induces similar root biochemical responses as Fe-EDDHA. Without the addition of nitrification inhibitors, the effectiveness of NH4+ supply on Fe chlorosis prevention resulted significantly lower. The aspects intertwined in this investigation highlight the complexity of Fe physiology and the fine metabolic tuning of grapevine genotypes to Fe availability and soil-related environmental factors. The experimental evidences reveal the need to carry out future researches on Fe nutrition maintaining a continous flow of knowledge between theoretical and agronomical perspectives for fully supporting the efforts devoted to convert science into practice.
Resumo:
The aging process is characterized by the progressive fitness decline experienced at all the levels of physiological organization, from single molecules up to the whole organism. Studies confirmed inflammaging, a chronic low-level inflammation, as a deeply intertwined partner of the aging process, which may provide the “common soil” upon which age-related diseases develop and flourish. Thus, albeit inflammation per se represents a physiological process, it can rapidly become detrimental if it goes out of control causing an excess of local and systemic inflammatory response, a striking risk factor for the elderly population. Developing interventions to counteract the establishment of this state is thus a top priority. Diet, among other factors, represents a good candidate to regulate inflammation. Building on top of this consideration, the EU project NU-AGE is now trying to assess if a Mediterranean diet, fortified for the elderly population needs, may help in modulating inflammaging. To do so, NU-AGE enrolled a total of 1250 subjects, half of which followed a 1-year long diet, and characterized them by mean of the most advanced –omics and non –omics analyses. The aim of this thesis was the development of a solid data management pipeline able to efficiently cope with the results of these assays, which are now flowing inside a centralized database, ready to be used to test the most disparate scientific hypotheses. At the same time, the work hereby described encompasses the data analysis of the GEHA project, which was focused on identifying the genetic determinants of longevity, with a particular focus on developing and applying a method for detecting epistatic interactions in human mtDNA. Eventually, in an effort to propel the adoption of NGS technologies in everyday pipeline, we developed a NGS variant calling pipeline devoted to solve all the sequencing-related issues of the mtDNA.