8 resultados para Numerical characterization
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Fibre Reinforced Concretes are innovative composite materials whose applications are growing considerably nowadays. Being composite materials, their performance depends on the mechanical properties of both components, fibre and matrix and, above all, on the interface. The variables to account for the mechanical characterization of the material, could be proper of the material itself, i.e. fibre and concrete type, or external factors, i.e. environmental conditions. The first part of the research presented is focused on the experimental and numerical characterization of the interface properties and short term response of fibre reinforced concretes with macro-synthetic fibers. The experimental database produced represents the starting point for numerical models calibration and validation with two principal purposes: the calibration of a local constitutive law and calibration and validation of a model predictive of the whole material response. In the perspective of the design of sustainable admixtures, the optimization of the matrix of cement-based fibre reinforced composites is realized with partial substitution of the cement amount. In the second part of the research, the effect of time dependent phenomena on MSFRCs response is studied. An extended experimental campaign of creep tests is performed analysing the effect of time and temperature variations in different loading conditions. On the results achieved, a numerical model able to account for the viscoelastic nature of both concrete and reinforcement, together with the environmental conditions, is calibrated with the LDPM theory. Different type of regression models are also elaborated correlating the mechanical properties investigated, bond strength and residual flexural behaviour, regarding the short term analysis and creep coefficient on time, for the time dependent behaviour, with the variable investigated. The experimental studies carried out emphasize the several aspects influencing the material mechanical performance allowing also the identification of those properties that the numerical approach should consider in order to be reliable.
Resumo:
To continuously improve the performance of metal-oxide-semiconductor field-effect-transistors (MOSFETs), innovative device architectures, gate stack engineering and mobility enhancement techniques are under investigation. In this framework, new physics-based models for Technology Computer-Aided-Design (TCAD) simulation tools are needed to accurately predict the performance of upcoming nanoscale devices and to provide guidelines for their optimization. In this thesis, advanced physically-based mobility models for ultrathin body (UTB) devices with either planar or vertical architectures such as single-gate silicon-on-insulator (SOI) field-effect transistors (FETs), double-gate FETs, FinFETs and silicon nanowire FETs, integrating strain technology and high-κ gate stacks are presented. The effective mobility of the two-dimensional electron/hole gas in a UTB FETs channel is calculated taking into account its tensorial nature and the quantization effects. All the scattering events relevant for thin silicon films and for high-κ dielectrics and metal gates have been addressed and modeled for UTB FETs on differently oriented substrates. The effects of mechanical stress on (100) and (110) silicon band structures have been modeled for a generic stress configuration. Performance will also derive from heterogeneity, coming from the increasing diversity of functions integrated on complementary metal-oxide-semiconductor (CMOS) platforms. For example, new architectural concepts are of interest not only to extend the FET scaling process, but also to develop innovative sensor applications. Benefiting from properties like large surface-to-volume ratio and extreme sensitivity to surface modifications, silicon-nanowire-based sensors are gaining special attention in research. In this thesis, a comprehensive analysis of the physical effects playing a role in the detection of gas molecules is carried out by TCAD simulations combined with interface characterization techniques. The complex interaction of charge transport in silicon nanowires of different dimensions with interface trap states and remote charges is addressed to correctly reproduce experimental results of recently fabricated gas nanosensors.
Resumo:
During the last few years, a great deal of interest has risen concerning the applications of stochastic methods to several biochemical and biological phenomena. Phenomena like gene expression, cellular memory, bet-hedging strategy in bacterial growth and many others, cannot be described by continuous stochastic models due to their intrinsic discreteness and randomness. In this thesis I have used the Chemical Master Equation (CME) technique to modelize some feedback cycles and analyzing their properties, including experimental data. In the first part of this work, the effect of stochastic stability is discussed on a toy model of the genetic switch that triggers the cellular division, which malfunctioning is known to be one of the hallmarks of cancer. The second system I have worked on is the so-called futile cycle, a closed cycle of two enzymatic reactions that adds and removes a chemical compound, called phosphate group, to a specific substrate. I have thus investigated how adding noise to the enzyme (that is usually in the order of few hundred molecules) modifies the probability of observing a specific number of phosphorylated substrate molecules, and confirmed theoretical predictions with numerical simulations. In the third part the results of the study of a chain of multiple phosphorylation-dephosphorylation cycles will be presented. We will discuss an approximation method for the exact solution in the bidimensional case and the relationship that this method has with the thermodynamic properties of the system, which is an open system far from equilibrium.In the last section the agreement between the theoretical prediction of the total protein quantity in a mouse cells population and the observed quantity will be shown, measured via fluorescence microscopy.
Resumo:
BTES (borehole thermal energy storage)systems exchange thermal energy by conduction with the surrounding ground through borehole materials. The spatial variability of the geological properties and the space-time variability of hydrogeological conditions affect the real power rate of heat exchangers and, consequently, the amount of energy extracted from / injected into the ground. For this reason, it is not an easy task to identify the underground thermal properties to use when designing. At the current state of technology, Thermal Response Test (TRT) is the in situ test for the characterization of ground thermal properties with the higher degree of accuracy, but it doesn’t fully solve the problem of characterizing the thermal properties of a shallow geothermal reservoir, simply because it characterizes only the neighborhood of the heat exchanger at hand and only for the test duration. Different analytical and numerical models exist for the characterization of shallow geothermal reservoir, but they are still inadequate and not exhaustive: more sophisticated models must be taken into account and a geostatistical approach is needed to tackle natural variability and estimates uncertainty. The approach adopted for reservoir characterization is the “inverse problem”, typical of oil&gas field analysis. Similarly, we create different realizations of thermal properties by direct sequential simulation and we find the best one fitting real production data (fluid temperature along time). The software used to develop heat production simulation is FEFLOW 5.4 (Finite Element subsurface FLOW system). A geostatistical reservoir model has been set up based on literature thermal properties data and spatial variability hypotheses, and a real TRT has been tested. Then we analyzed and used as well two other codes (SA-Geotherm and FV-Geotherm) which are two implementation of the same numerical model of FEFLOW (Al-Khoury model).
Resumo:
The quench characteristics of second generation (2 G) YBCO Coated Conductor (CC) tapes are of fundamental importance for the design and safe operation of superconducting cables and magnets based on this material. Their ability to transport high current densities at high temperature, up to 77 K, and at very high fields, over 20 T, together with the increasing knowledge in their manufacturing, which is reducing their cost, are pushing the use of this innovative material in numerous system applications, from high field magnets for research to motors and generators as well as for cables. The aim of this Ph. D. thesis is the experimental analysis and numerical simulations of quench in superconducting HTS tapes and coils. A measurements facility for the characterization of superconducting tapes and coils was designed, assembled and tested. The facility consist of a cryostat, a cryocooler, a vacuum system, resistive and superconducting current leads and signal feedthrough. Moreover, the data acquisition system and the software for critical current and quench measurements were developed. A 2D model was developed using the finite element code COMSOL Multiphysics R . The problem of modeling the high aspect ratio of the tape is tackled by multiplying the tape thickness by a constant factor, compensating the heat and electrical balance equations by introducing a material anisotropy. The model was then validated both with the results of a 1D quench model based on a non-linear electric circuit coupled to a thermal model of the tape, to literature measurements and to critical current and quench measurements made in the cryogenic facility. Finally the model was extended to the study of coils and windings with the definition of the tape and stack homogenized properties. The procedure allows the definition of a multi-scale hierarchical model, able to simulate the windings with different degrees of detail.
Resumo:
This thesis aims to present the ORC technology, its advantages and related problems. In particular, it provides an analysis of ORC waste heat recovery system in different and innovative scenarios, focusing on cases from the biggest to the lowest scale. Both industrial and residential ORC applications are considered. In both applications, the installation of a subcritical and recuperated ORC system is examined. Moreover, heat recovery is considered in absence of an intermediate heat transfer circuit. This solution allow to improve the recovery efficiency, but requiring safety precautions. Possible integrations of ORC systems with renewable sources are also presented and investigated to improve the non-programmable source exploitation. In particular, the offshore oil and gas sector has been selected as a promising industrial large-scale ORC application. From the design of ORC systems coupled with Gas Turbines (GTs) as topper systems, the dynamic behavior of the GT+ORC innovative combined cycles has been analyzed by developing a dynamic model of all the considered components. The dynamic behavior is caused by integration with a wind farm. The electric and thermal aspects have been examined to identify the advantages related to the waste heat recovery system installation. Moreover, an experimental test rig has been realized to test the performance of a micro-scale ORC prototype. The prototype recovers heat from a low temperature water stream, available for instance in industrial or residential waste heat. In the test bench, various sensors have been installed, an acquisitions system developed in Labview environment to completely analyze the ORC behavior. Data collected in real time and corresponding to the system dynamic behavior have been used to evaluate the system performance based on selected indexes. Moreover, various operational steady-state conditions are identified and operation maps are realized for a completely characterization of the system and to detect the optimal operating conditions.
Resumo:
A possible future scenario for the water injection (WI) application has been explored as an advanced strategy for modern GDI engines. The aim is to verify whether the PWI (Port Water Injection) and DWI (Direct Water Injection) architectures can replace current fuel enrichment strategies to limit turbine inlet temperatures (TiT) and knock engine attitude. In this way, it might be possible to extend the stoichiometric mixture condition over the entire engine map, meeting possible future restrictions in the use of AES (Auxiliary Emission Strategies) and future emission limitations. The research was first addressed through a comprehensive assessment of the state-of-the-art of the technology and the main effects of the chemical-physical water properties. Then, detailed chemical kinetics simulations were performed in order to compute the effects of WI on combustion development and auto-ignition. The latter represents an important methodology step for accurate numerical combustion simulations. The water injection was then analysed in detail for a PWI system, through an experimental campaign for macroscopic and microscopic injector characterization inside a test chamber. The collected data were used to perform a numerical validation of the spray models, obtaining an excellent matching in terms of particle size and droplet velocity distributions. Finally, a wide range of three-dimensional CFD simulations of a virtual high-bmep engine were realized and compared, exploring also different engine designs and water/fuel injection strategies under non-reacting and reacting flow conditions. According to the latter, it was found that thanks to the introduction of water, for both PWI and DWI systems, it could be possible to obtain an increase of the target performance and an optimization of the bsfc (Break Specific Fuel Consumption), lowering the engine knock risk at the same time, while the TiT target has been achieved hardly only for one DWI configuration.
Resumo:
In this thesis, a TCAD approach for the investigation of charge transport in amorphous silicon dioxide is presented for the first time. The proposed approach is used to investigate high-voltage silicon oxide thick TEOS capacitors embedded in the back-end inter-level dielectric layers for galvanic insulation applications. In the first part of this thesis, a detailed review of the main physical and chemical properties of silicon dioxide and the main physical models for the description of charge transport in insulators are presented. In the second part, the characterization of high-voltage MIM structures at different high-field stress conditions up to the breakdown is presented. The main physical mechanisms responsible of the observed results are then discussed in details. The third part is dedicated to the implementation of a TCAD approach capable of describing charge transport in silicon dioxide layers in order to gain insight into the microscopic physical mechanisms responsible of the leakage current in MIM structures. In particular, I investigated and modeled the role of charge injection at contacts and charge build-up due to trapping and de-trapping mechanisms in the oxide layer to the purpose of understanding its behavior under DC and AC stress conditions. In addition, oxide breakdown due to impact-ionization of carriers has been taken into account in order to have a complete representation of the oxide behavior at very high fields. Numerical simulations have been compared against experiments to quantitatively validate the proposed approach. In the last part of the thesis, the proposed approach has been applied to simulate the breakdown in realistic structures under different stress conditions. The TCAD tool has been used to carry out a detailed analysis of the most relevant physical quantities, in order to gain a detailed understanding on the main mechanisms responsible for breakdown and guide design optimization.