33 resultados para Nuclear structure models and methods

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer aided design of Monolithic Microwave Integrated Circuits (MMICs) depends critically on active device models that are accurate, computationally efficient, and easily extracted from measurements or device simulators. Empirical models of active electron devices, which are based on actual device measurements, do not provide a detailed description of the electron device physics. However they are numerically efficient and quite accurate. These characteristics make them very suitable for MMIC design in the framework of commercially available CAD tools. In the empirical model formulation it is very important to separate linear memory effects (parasitic effects) from the nonlinear effects (intrinsic effects). Thus an empirical active device model is generally described by an extrinsic linear part which accounts for the parasitic passive structures connecting the nonlinear intrinsic electron device to the external world. An important task circuit designers deal with is evaluating the ultimate potential of a device for specific applications. In fact once the technology has been selected, the designer would choose the best device for the particular application and the best device for the different blocks composing the overall MMIC. Thus in order to accurately reproducing the behaviour of different-in-size devices, good scalability properties of the model are necessarily required. Another important aspect of empirical modelling of electron devices is the mathematical (or equivalent circuit) description of the nonlinearities inherently associated with the intrinsic device. Once the model has been defined, the proper measurements for the characterization of the device are performed in order to identify the model. Hence, the correct measurement of the device nonlinear characteristics (in the device characterization phase) and their reconstruction (in the identification or even simulation phase) are two of the more important aspects of empirical modelling. This thesis presents an original contribution to nonlinear electron device empirical modelling treating the issues of model scalability and reconstruction of the device nonlinear characteristics. The scalability of an empirical model strictly depends on the scalability of the linear extrinsic parasitic network, which should possibly maintain the link between technological process parameters and the corresponding device electrical response. Since lumped parasitic networks, together with simple linear scaling rules, cannot provide accurate scalable models, either complicate technology-dependent scaling rules or computationally inefficient distributed models are available in literature. This thesis shows how the above mentioned problems can be avoided through the use of commercially available electromagnetic (EM) simulators. They enable the actual device geometry and material stratification, as well as losses in the dielectrics and electrodes, to be taken into account for any given device structure and size, providing an accurate description of the parasitic effects which occur in the device passive structure. It is shown how the electron device behaviour can be described as an equivalent two-port intrinsic nonlinear block connected to a linear distributed four-port passive parasitic network, which is identified by means of the EM simulation of the device layout, allowing for better frequency extrapolation and scalability properties than conventional empirical models. Concerning the issue of the reconstruction of the nonlinear electron device characteristics, a data approximation algorithm has been developed for the exploitation in the framework of empirical table look-up nonlinear models. Such an approach is based on the strong analogy between timedomain signal reconstruction from a set of samples and the continuous approximation of device nonlinear characteristics on the basis of a finite grid of measurements. According to this criterion, nonlinear empirical device modelling can be carried out by using, in the sampled voltage domain, typical methods of the time-domain sampling theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural events are a widely recognized hazard for industrial sites where relevant quantities of hazardous substances are handled, due to the possible generation of cascading events resulting in severe technological accidents (Natech scenarios). Natural events may damage storage and process equipment containing hazardous substances, that may be released leading to major accident scenarios called Natech events. The need to assess the risk associated with Natech scenarios is growing and methodologies were developed to allow the quantification of Natech risk, considering both point sources and linear sources as pipelines. A key element of these procedures is the use of vulnerability models providing an estimation of the damage probability of equipment or pipeline segment as a result of the impact of the natural event. Therefore, the first aim of the PhD project was to outline the state of the art of vulnerability models for equipment and pipelines subject to natural events such as floods, earthquakes, and wind. Moreover, the present PhD project also aimed at the development of new vulnerability models in order to fill some gaps in literature. In particular, a vulnerability model for vertical equipment subject to wind and to flood were developed. Finally, in order to improve the calculation of Natech risk for linear sources an original methodology was developed for Natech quantitative risk assessment methodology for pipelines subject to earthquakes. Overall, the results obtained are a step forward in the quantitative risk assessment of Natech accidents. The tools developed open the way to the inclusion of new equipment in the analysis of Natech events, and the methodology for the assessment of linear risk sources as pipelines provides an important tool for a more accurate and comprehensive assessment of Natech risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human movement analysis (HMA) aims to measure the abilities of a subject to stand or to walk. In the field of HMA, tests are daily performed in research laboratories, hospitals and clinics, aiming to diagnose a disease, distinguish between disease entities, monitor the progress of a treatment and predict the outcome of an intervention [Brand and Crowninshield, 1981; Brand, 1987; Baker, 2006]. To achieve these purposes, clinicians and researchers use measurement devices, like force platforms, stereophotogrammetric systems, accelerometers, baropodometric insoles, etc. This thesis focus on the force platform (FP) and in particular on the quality assessment of the FP data. The principal objective of our work was the design and the experimental validation of a portable system for the in situ calibration of FPs. The thesis is structured as follows: Chapter 1. Description of the physical principles used for the functioning of a FP: how these principles are used to create force transducers, such as strain gauges and piezoelectrics transducers. Then, description of the two category of FPs, three- and six-component, the signals acquisition (hardware structure), and the signals calibration. Finally, a brief description of the use of FPs in HMA, for balance or gait analysis. Chapter 2. Description of the inverse dynamics, the most common method used in the field of HMA. This method uses the signals measured by a FP to estimate kinetic quantities, such as joint forces and moments. The measures of these variables can not be taken directly, unless very invasive techniques; consequently these variables can only be estimated using indirect techniques, as the inverse dynamics. Finally, a brief description of the sources of error, present in the gait analysis. Chapter 3. State of the art in the FP calibration. The selected literature is divided in sections, each section describes: systems for the periodic control of the FP accuracy; systems for the error reduction in the FP signals; systems and procedures for the construction of a FP. In particular is detailed described a calibration system designed by our group, based on the theoretical method proposed by ?. This system was the “starting point” for the new system presented in this thesis. Chapter 4. Description of the new system, divided in its parts: 1) the algorithm; 2) the device; and 3) the calibration procedure, for the correct performing of the calibration process. The algorithm characteristics were optimized by a simulation approach, the results are here presented. In addiction, the different versions of the device are described. Chapter 5. Experimental validation of the new system, achieved by testing it on 4 commercial FPs. The effectiveness of the calibration was verified by measuring, before and after calibration, the accuracy of the FPs in measuring the center of pressure of an applied force. The new system can estimate local and global calibration matrices; by local and global calibration matrices, the non–linearity of the FPs was quantified and locally compensated. Further, a non–linear calibration is proposed. This calibration compensates the non– linear effect in the FP functioning, due to the bending of its upper plate. The experimental results are presented. Chapter 6. Influence of the FP calibration on the estimation of kinetic quantities, with the inverse dynamics approach. Chapter 7. The conclusions of this thesis are presented: need of a calibration of FPs and consequential enhancement in the kinetic data quality. Appendix: Calibration of the LC used in the presented system. Different calibration set–up of a 3D force transducer are presented, and is proposed the optimal set–up, with particular attention to the compensation of non–linearities. The optimal set–up is verified by experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic resonance imaging (MRI) is today precluded to patients bearing active implantable medical devices AIMDs). The great advantages related to this diagnostic modality, together with the increasing number of people benefiting from implantable devices, in particular pacemakers(PM)and carioverter/defibrillators (ICD), is prompting the scientific community the study the possibility to extend MRI also to implanted patients. The MRI induced specific absorption rate (SAR) and the consequent heating of biological tissues is one of the major concerns that makes patients bearing metallic structures contraindicated for MRI scans. To date, both in-vivo and in-vitro studies have demonstrated the potentially dangerous temperature increase caused by the radiofrequency (RF) field generated during MRI procedures in the tissues surrounding thin metallic implants. On the other side, the technical evolution of MRI scanners and of AIMDs together with published data on the lack of adverse events have reopened the interest in this field and suggest that, under given conditions, MRI can be safely performed also in implanted patients. With a better understanding of the hazards of performing MRI scans on implanted patients as well as the development of MRI safe devices, we may soon enter an era where the ability of this imaging modality may be more widely used to assist in the appropriate diagnosis of patients with devices. In this study both experimental measures and numerical analysis were performed. Aim of the study is to systematically investigate the effects of the MRI RF filed on implantable devices and to identify the elements that play a major role in the induced heating. Furthermore, we aimed at developing a realistic numerical model able to simulate the interactions between an RF coil for MRI and biological tissues implanted with a PM, and to predict the induced SAR as a function of the particular path of the PM lead. The methods developed and validated during the PhD program led to the design of an experimental framework for the accurate measure of PM lead heating induced by MRI systems. In addition, numerical models based on Finite-Differences Time-Domain (FDTD) simulations were validated to obtain a general tool for investigating the large number of parameters and factors involved in this complex phenomenon. The results obtained demonstrated that the MRI induced heating on metallic implants is a real risk that represents a contraindication in extending MRI scans also to patient bearing a PM, an ICD, or other thin metallic objects. On the other side, both experimental data and numerical results show that, under particular conditions, MRI procedures might be consider reasonably safe also for an implanted patient. The complexity and the large number of variables involved, make difficult to define a unique set of such conditions: when the benefits of a MRI investigation cannot be obtained using other imaging techniques, the possibility to perform the scan should not be immediately excluded, but some considerations are always needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last few years, a great deal of interest has risen concerning the applications of stochastic methods to several biochemical and biological phenomena. Phenomena like gene expression, cellular memory, bet-hedging strategy in bacterial growth and many others, cannot be described by continuous stochastic models due to their intrinsic discreteness and randomness. In this thesis I have used the Chemical Master Equation (CME) technique to modelize some feedback cycles and analyzing their properties, including experimental data. In the first part of this work, the effect of stochastic stability is discussed on a toy model of the genetic switch that triggers the cellular division, which malfunctioning is known to be one of the hallmarks of cancer. The second system I have worked on is the so-called futile cycle, a closed cycle of two enzymatic reactions that adds and removes a chemical compound, called phosphate group, to a specific substrate. I have thus investigated how adding noise to the enzyme (that is usually in the order of few hundred molecules) modifies the probability of observing a specific number of phosphorylated substrate molecules, and confirmed theoretical predictions with numerical simulations. In the third part the results of the study of a chain of multiple phosphorylation-dephosphorylation cycles will be presented. We will discuss an approximation method for the exact solution in the bidimensional case and the relationship that this method has with the thermodynamic properties of the system, which is an open system far from equilibrium.In the last section the agreement between the theoretical prediction of the total protein quantity in a mouse cells population and the observed quantity will be shown, measured via fluorescence microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is a collection of works focused on the topic of Earthquake Early Warning, with a special attention to large magnitude events. The topic is addressed from different points of view and the structure of the thesis reflects the variety of the aspects which have been analyzed. The first part is dedicated to the giant, 2011 Tohoku-Oki earthquake. The main features of the rupture process are first discussed. The earthquake is then used as a case study to test the feasibility Early Warning methodologies for very large events. Limitations of the standard approaches for large events arise in this chapter. The difficulties are related to the real-time magnitude estimate from the first few seconds of recorded signal. An evolutionary strategy for the real-time magnitude estimate is proposed and applied to the single Tohoku-Oki earthquake. In the second part of the thesis a larger number of earthquakes is analyzed, including small, moderate and large events. Starting from the measurement of two Early Warning parameters, the behavior of small and large earthquakes in the initial portion of recorded signals is investigated. The aim is to understand whether small and large earthquakes can be distinguished from the initial stage of their rupture process. A physical model and a plausible interpretation to justify the observations are proposed. The third part of the thesis is focused on practical, real-time approaches for the rapid identification of the potentially damaged zone during a seismic event. Two different approaches for the rapid prediction of the damage area are proposed and tested. The first one is a threshold-based method which uses traditional seismic data. Then an innovative approach using continuous, GPS data is explored. Both strategies improve the prediction of large scale effects of strong earthquakes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented in this thesis tackles some important points concerning the collective properties of two typical categories of molecular crystals, i.e., anthracene derivatives and charge transfer crystals. Anthracene derivatives have constituted the class of materials from which systematical investigations of crystal-to-crystal photodimerization reactions started, developed and have been the subject of a new awakening in the recent years. In this work some of these compounds, namely, 9-cyanoanthacene, 9-anthacenecarboxylic acid and 9-methylanthracene, have been selected as model systems for a phenomenological approach to some key properties of the solid state, investigated by spectroscopic methods. The present results show that, on the basis of the solid state organization and the chemical nature of each compound, photo-reaction dynamics and kinetics display distinctive behaviors, which allows for a classification of the various processes in topochemical, non topochemical, reversible or topophysical. The second part of the thesis was focused on charge transfer crystals, binary systems formed by stoichiometric combinations of the charge donating perylene (D) and the charge accepting tetracyano-quinodimethane (A), this latter also in its fluorinated derivatives. The work was focused on the growth of single crystals, some of which not yet reported in the literature, by PVT technique. Structural and spectroscopic characterizations have been performed, with the aim of determining the degree of charge transfer between donor and acceptor in the co-crystals. An interesting outcome of the systematic search performed in this work is the definition of the experimental conditions which drive the crystal growth of the binary systems either towards the low (1:1) or the high ratio (3:1 or 3:2) stoichiometries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Logistics involves planning, managing, and organizing the flows of goods from the point of origin to the point of destination in order to meet some requirements. Logistics and transportation aspects are very important and represent a relevant costs for producing and shipping companies, but also for public administration and private citizens. The optimization of resources and the improvement in the organization of operations is crucial for all branches of logistics, from the operation management to the transportation. As we will have the chance to see in this work, optimization techniques, models, and algorithms represent important methods to solve the always new and more complex problems arising in different segments of logistics. Many operation management and transportation problems are related to the optimization class of problems called Vehicle Routing Problems (VRPs). In this work, we consider several real-world deterministic and stochastic problems that are included in the wide class of the VRPs, and we solve them by means of exact and heuristic methods. We treat three classes of real-world routing and logistics problems. We deal with one of the most important tactical problems that arises in the managing of the bike sharing systems, that is the Bike sharing Rebalancing Problem (BRP). We propose models and algorithms for real-world earthwork optimization problems. We describe the 3DP process and we highlight several optimization issues in 3DP. Among those, we define the problem related to the tool path definition in the 3DP process, the 3D Routing Problem (3DRP), which is a generalization of the arc routing problem. We present an ILP model and several heuristic algorithms to solve the 3DRP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decades, global food supply chains had to deal with the increasing awareness of the stakeholders and consumers about safety, quality, and sustainability. In order to address these new challenges for food supply chain systems, an integrated approach to design, control, and optimize product life cycle is required. Therefore, it is essential to introduce new models, methods, and decision-support platforms tailored to perishable products. This thesis aims to provide novel practice-ready decision-support models and methods to optimize the logistics of food items with an integrated and interdisciplinary approach. It proposes a comprehensive review of the main peculiarities of perishable products and the environmental stresses accelerating their quality decay. Then, it focuses on top-down strategies to optimize the supply chain system from the strategical to the operational decision level. Based on the criticality of the environmental conditions, the dissertation evaluates the main long-term logistics investment strategies to preserve products quality. Several models and methods are proposed to optimize the logistics decisions to enhance the sustainability of the supply chain system while guaranteeing adequate food preservation. The models and methods proposed in this dissertation promote a climate-driven approach integrating climate conditions and their consequences on the quality decay of products in innovative models supporting the logistics decisions. Given the uncertain nature of the environmental stresses affecting the product life cycle, an original stochastic model and solving method are proposed to support practitioners in controlling and optimizing the supply chain systems when facing uncertain scenarios. The application of the proposed decision-support methods to real case studies proved their effectiveness in increasing the sustainability of the perishable product life cycle. The dissertation also presents an industry application of a global food supply chain system, further demonstrating how the proposed models and tools can be integrated to provide significant savings and sustainability improvements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone disorders have severe impact on body functions and quality life, and no satisfying therapies exist yet. The current models for bone disease study are scarcely predictive and the options existing for therapy fail for complex systems. To mimic and/or restore bone, 3D printing/bioprinting allows the creation of 3D structures with different materials compositions, properties, and designs. In this study, 3D printing/bioprinting has been explored for (i) 3D in vitro tumor models and (ii) regenerative medicine. Tumor models have been developed by investigating different bioinks (i.e., alginate, modified gelatin) enriched by hydroxyapatite nanoparticles to increase printing fidelity and increase biomimicry level, thus mimicking the organic and inorganic phase of bone. High Saos-2 cell viability was obtained, and the promotion of spheroids clusters as occurring in vivo was observed. To develop new syntethic bone grafts, two approaches have been explored. In the first, novel magnesium-phosphate scaffolds have been investigated by extrusion-based 3D printing for spinal fusion. 3D printing process and parameters have been optimized to obtain custom-shaped structures, with competent mechanical properties. The 3D printed structures have been combined to alginate porous structures created by a novel ice-templating technique, to be loaded by antibiotic drug to address infection prevention. Promising results in terms of planktonic growth inhibition was obtained. In the second strategy, marine waste precursors have been considered for the conversion in biogenic HA by using a mild-wet conversion method with different parameters. The HA/carbonate ratio conversion efficacy was analysed for each precursor (by FTIR and SEM), and the best conditions were combined to alginate to develop a composite structure. The composite paste was successfully employed in custom-modified 3D printer for the obtainment of 3D printed stable scaffolds. In conclusion, the osteomimetic materials developed in this study for bone models and synthetic grafts are promising in bone field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep Neural Networks (DNNs) have revolutionized a wide range of applications beyond traditional machine learning and artificial intelligence fields, e.g., computer vision, healthcare, natural language processing and others. At the same time, edge devices have become central in our society, generating an unprecedented amount of data which could be used to train data-hungry models such as DNNs. However, the potentially sensitive or confidential nature of gathered data poses privacy concerns when storing and processing them in centralized locations. To this purpose, decentralized learning decouples model training from the need of directly accessing raw data, by alternating on-device training and periodic communications. The ability of distilling knowledge from decentralized data, however, comes at the cost of facing more challenging learning settings, such as coping with heterogeneous hardware and network connectivity, statistical diversity of data, and ensuring verifiable privacy guarantees. This Thesis proposes an extensive overview of decentralized learning literature, including a novel taxonomy and a detailed description of the most relevant system-level contributions in the related literature for privacy, communication efficiency, data and system heterogeneity, and poisoning defense. Next, this Thesis presents the design of an original solution to tackle communication efficiency and system heterogeneity, and empirically evaluates it on federated settings. For communication efficiency, an original method, specifically designed for Convolutional Neural Networks, is also described and evaluated against the state-of-the-art. Furthermore, this Thesis provides an in-depth review of recently proposed methods to tackle the performance degradation introduced by data heterogeneity, followed by empirical evaluations on challenging data distributions, highlighting strengths and possible weaknesses of the considered solutions. Finally, this Thesis presents a novel perspective on the usage of Knowledge Distillation as a mean for optimizing decentralized learning systems in settings characterized by data heterogeneity or system heterogeneity. Our vision on relevant future research directions close the manuscript.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative Susceptibility Mapping (QSM) is an advanced magnetic resonance technique that can quantify in vivo biomarkers of pathology, such as alteration in iron and myelin concentration. It allows for the comparison of magnetic susceptibility properties within and between different subject groups. In this thesis, QSM acquisition and processing pipeline are discussed, together with clinical and methodological applications of QSM to neurodegeneration. In designing the studies, significant emphasis was placed on results reproducibility and interpretability. The first project focuses on the investigation of cortical regions in amyotrophic lateral sclerosis. By examining various histogram susceptibility properties, a pattern of increased iron content was revealed in patients with amyotrophic lateral sclerosis compared to controls and other neurodegenerative disorders. Moreover, there was a correlation between susceptibility and upper motor neuron impairment, particularly in patients experiencing rapid disease progression. Similarly, in the second application, QSM was used to examine cortical and sub-cortical areas in individuals with myotonic dystrophy type 1. The thalamus and brainstem were identified as structures of interest, with relevant correlations with clinical and laboratory data such as neurological evaluation and sleep records. In the third project, a robust pipeline for assessing radiomic susceptibility-based features reliability was implemented within a cohort of patients with multiple sclerosis and healthy controls. Lastly, a deep learning super-resolution model was applied to QSM images of healthy controls. The employed model demonstrated excellent generalization abilities and outperformed traditional up-sampling methods, without requiring a customized re-training. Across the three disorders investigated, it was evident that QSM is capable of distinguishing between patient groups and healthy controls while establishing correlations between imaging measurements and clinical data. These studies lay the foundation for future research, with the ultimate goal of achieving earlier and less invasive diagnoses of neurodegenerative disorders within the context of personalized medicine.