8 resultados para Nuclear Matrix Proteins

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cytotoxicity of dental composites has been attributed to the release of residual monomers from polymerized adhesive systems due to degradation processes or the incomplete polymerization of materials. 2-Hydroxyethyl methacrylate (HEMA) is one of the major components released from dental adhesives. Cytotoxic effects due to high concentrations of HEMA have already been investigated, but the influence of minor toxic concentrations for long-term exposition on specific proteins such as type I collagen and tenascin has not been studied in depth. The objective of this project was to study the effect of minor toxic concentrations of HEMA on human gingival fibroblasts (HGFs) and human pulp fibroblasts (HPFs), investigating modification in cell morphology, cell viability, and the influence on type I collagen and tenascin proteins. Different concentrations of the resin monomer and different times of exposition were tested on both cell lines. The cell vitality was determined by MTT assay, and high-resolution scanning electron microscopy analysis was performed to evaluate differences in cell morphology before and after treatment. To evaluate the variability in the expression and synthesis of procollagen α1 type I and tenascin proteins on HGFs and HPFs treated with HEMA at different concentrations immunofluorescence, RT-PCR and western blot analysis, were carried out. The treatments on HGFs with 3mmol/L HEMA, showed a strong reduction of procollagen α1 type I protein at 72h and 96h, demonstrating that HEMA interferes both with the synthesis of the procollagen α1 type I protein and its mRNA expression. The results obtained on HPFs treated with different concentrations of HEMA ranging from 0,5mmol/L to 3mmol/L and for different exposition times showed a strong reduction in cell viability in specimens treated for 96h and 168h, while immunofluorescence and western blotting analysis demonstrated a reduction of procollagen α1 type I and an overexpression of tenascin protein. In conclusion, our results showed that the concentrations of HEMA we tested, effect the normal cell production and activity, such as the synthesis of some dental extracellular matrix proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of protein fold is a central problem in life science, leading in the last years to several attempts for improving our knowledge of the protein structures. In this thesis this challenging problem is tackled by means of molecular dynamics, chirality and NMR studies. In the last decades, many algorithms were designed for the protein secondary structure assignment, which reveals the local protein shape adopted by segments of amino acids. In this regard, the use of local chirality for the protein secondary structure assignment was demonstreted, trying to correlate as well the propensity of a given amino acid for a particular secondary structure. The protein fold can be studied also by Nuclear Magnetic Resonance (NMR) investigations, finding the average structure adopted from a protein. In this context, the effect of Residual Dipolar Couplings (RDCs) in the structure refinement was shown, revealing a strong improvement of structure resolution. A wide extent of this thesis is devoted to the study of avian prion protein. Prion protein is the main responsible of a vast class of neurodegenerative diseases, known as Bovine Spongiform Encephalopathy (BSE), present in mammals, but not in avian species and it is caused from the conversion of cellular prion protein to the pathogenic misfolded isoform, accumulating in the brain in form of amiloyd plaques. In particular, the N-terminal region, namely the initial part of the protein, is quite different between mammal and avian species but both of them contain multimeric sequences called Repeats, octameric in mammals and hexameric in avians. However, such repeat regions show differences in the contained amino acids, in particular only avian hexarepeats contain tyrosine residues. The chirality analysis of avian prion protein configurations obtained from molecular dynamics reveals a high stiffness of the avian protein, which tends to preserve its regular secondary structure. This is due to the presence of prolines, histidines and especially tyrosines, which form a hydrogen bond network in the hexarepeat region, only possible in the avian protein, and thus probably hampering the aggregation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein aggregation and formation of insoluble aggregates in central nervous system is the main cause of neurodegenerative disease. Parkinson’s disease is associated with the appearance of spherical masses of aggregated proteins inside nerve cells called Lewy bodies. α-Synuclein is the main component of Lewy bodies. In addition to α-synuclein, there are more than a hundred of other proteins co-localized in Lewy bodies: 14-3-3η protein is one of them. In order to increase our understanding on the aggregation mechanism of α-synuclein and to study the effect of 14-3-3η on it, I addressed the following questions. (i) How α-synuclein monomers pack each other during aggregation? (ii) Which is the role of 14-3-3η on α-synuclein packing during its aggregation? (iii) Which is the role of 14-3-3η on an aggregation of α-synuclein “seeded” by fragments of its fibrils? In order to answer these questions, I used different biophysical techniques (e.g., Atomic force microscope (AFM), Nuclear magnetic resonance (NMR), Surface plasmon resonance (SPR) and Fluorescence spectroscopy (FS)).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amniotic fluid stem cells (hAFSC) are emerging as a potential therapeutic approach for various disorders. The low number of available hAFSC requires their ex vivo expansion prior to clinical use, however, during their in vitro culture, hAFSC quickly reach replicative senescence. The principal aim of this study was to investigate the aging process occurring during in vitro expansion of hAFSC, focusing on the redox control that has been reported to be affected in premature and physiological aging. My results show that a strong heterogeneity is present among samples that reflects their different behaviour in culture. I identified three proteins, namely Nox4, prelamin A and PML, which expression increases during hAFSC aging process and could be used as new biomarkers to screen the samples. Furthermore, I found that Nox4 degradation is regulated by sumoylation via proteasome and involves interactions with PML bodies and prelamin A. Since various studies revealed that donor-dependent differences could be explained by cell-to-cell variation within each patient, I studied in deep this phenomenon. I showed that the heterogeneity among samples is also accompanied by a strong intra-population heterogeneity. Separation of hAFSC subpopulations from the same donor, using Celector® technology, showed that an enrichment in the last eluted fraction could improve hAFSC application in regenerative medicine. One of the other problems is that nowadays hAFSC are expanded under atmospheric O2 concentration, which is higher than the O2 tension in their natural niches. This higher O2 concentration might cause environmental stress to the in vitro cultured hAFSCs and accelerate their aging process. Here, I showed that prolonged low oxygen tension exposure preserves different hAFSC stemness properties. In conclusion, my study pointed different approaches to improve in vitro hAFSC expansion and manipulation with the purpose to land at stem cell therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis aims at investigating the evolution of physico-chemical and electrical properties relevant to low-voltage power cables for nuclear application when subjected to typical nuclear power plant (NPP) environments i.e., to gamma radiation and high temperature. This research is part of the European Project Horizon 2020 TeaM Cables, which aims at providing a novel methodology for efficient and reliable NPP cable aging management to NPP operators. The analyzed samples consist of both coaxial and twisted pair cables with different polymeric compounds used as primary insulation. Insulating materials are based on the same silane cross-linked polyethylene matrix with different additives and fillers. In order to characterize the material response to the environmental stresses, various experimental techniques have been used. These characterizations range from the microscale chemical response e.g. by FTIR, OIT and DSC, to the macroscale electrical and mechanical behavior. A significant part of this Thesis is given to the correlation of the response to aging among the different measured properties. It has been shown that it could be possible to connect both the chemical and mechanical properties of the investigated XLPE cables with the electrical ones. In particular, the high-frequency dielectric response allows an effective monitoring of both the early periods of aging, controlled by the antioxidant consumption kinetics, and then the subsequent oxidation of the polymer matrix. Therefore, dielectric spectroscopy showed to be capable of assessing the LV cable aging state and, it might be used as an aging marker for cable diagnostic. The last part of the manuscript focuses on the building of a predictive modelling approach of LV cable conditions subjected to radio-chemical aging. It resulted into obtaining a lifetime curve which relates the aging factor to which the cable is subjected to, namely the dose rate, with the limit value of the considered electrical property (tanδ).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis is to explore the possible influence of the food matrix on food quality attributes. Using nuclear magnetic resonance techniques, the matrix-dependent properties of different foods were studied and some useful indices were defined to classify food products based on the matrix behaviour when responding to processing phenomena. Correlations were found between fish freshness indices, assessed by certain geometric parameters linked to the morphology of the animal, i.e. a macroscopic structure, and the degradation of the product structure. The same foodomics approach was also applied to explore the protective effect of modified atmospheres on the stability of fish fillets, which are typically susceptible to oxidation of the polyunsaturated fatty acids incorporated in the meat matrix. Here, freshness is assessed by evaluating the time-dependent change in the fish metabolome, providing an established freshness index, and its relationship to lipid oxidation. In vitro digestion studies, focusing on food products with different matrixes, alone and in combination with other meal components (e.g. seasoning), were conducted to investigate possible interactions between enzymes and food, modulated by matrix structure, which influence digestibility. The interaction between water and the gelatinous matrix of the food, consisting of a network of protein gels incorporating fat droplets, was also studied by means of nuclear magnetic relaxometry, in order to create a prediction tool for the correct classification of authentic and counterfeit food products protected by a quality label. This is one of the first applications of an NMR method focusing on the supramolecular structure of the matrix, rather than the chemical composition, to assess food authenticity. The effect of innovative processing technologies, such as PEF applied to fruit products, has been assessed by magnetic resonance imaging, exploiting information associated with the rehydration kinetics exerted by a modified food structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteosarcoma (OS) and Ewing sarcoma (EWS) are the two most frequent primary bone tumors, in which metastases remain the most relevant adverse prognostic factor. Lamin A is the main constituent of the nuclear lamina, with a fundamental role in maintaining the connection between nucleus and cytoskeleton (through LINC complex proteins interactions), and its alterations can be implicated in tumor progression. We investigated how nucleo-cytoskeleton dynamics is influenced by lamin A modulation in OS and EWS, demonstrating that both these cancer models had low levels of lamin A, which are linked to a significantly more marked nuclear misshaping. In our in vitro studies, reduced levels of lamin A promoted migratory abilities in these tumors. Moreover, these findings were corroborated by gene expression analyses on EWS patient samples, showing that LMNA levels were significantly lower in metastatic lesions compared to primary tumors and that patients with low LMNA had a significant worse overall survival. We also found that LMNA expression significantly impaired EWS metastases formation in vivo. We demonstrated that low lamin A expression was linked to a severe mislocalization of LINC complex proteins, thus disrupting nucleo-cytoskeleton interactions, with a corresponding gain in malignant properties, which resulted in increased invasiveness. Lamin A overexpression or its accumulation by a statin-based pharmacological treatment allowed us to reconstitute a functional nucleo-cytoskeleton interplay, which resulted in significant downmodulation of ROCK2 and YAP, two crucial drivers of EWS aggressiveness. Our study demonstrated that lamin A is a favorable mediator of nuclear shape stability in bone sarcomas, and its modulation rescues LINC complex protein localization and regulates mechano-signaling pathways, thus promoting a less aggressive cancer phenotype. We also identified statins, already employed in clinical practice, as a tool capable to increase lamin A levels, and to reconstitute functional nucleo-cytoskeletal dynamics, resulting in reduced cellular migration.