3 resultados para Non-renormalizable operators

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In questo lavoro si analizza l’imposizione indiretta nel commercio elettronico; l’analisi si è basata sullo studio della normativa Comunitaria (Direttive Europee ) e la legislazione e Italiana, esponendo anche le differenze con il profilo legislativo brasiliano (softwares e libri).Esposti i contributi delle istituzione internazionali (conferenze ed/o proposte della Unione Europea) per l’inquadramento tipologico e fiscale del commercio elettronico, sono stati analizzati i profili generali dell’istituto della stabile organizzazione ai fini dell’imposizione dell’IVA e al commercio elettronico, distinguendo anche tra le transazioni elettroniche considerabili come cessione di beni e quelle considerabili prestazioni di servizi, in base alla materialità o alla dematerializzazione del bene scambiato. Anche il principio di territorialità nelle prestazioni di servizi è stato analizzato tramite analisi dei regimi ordinario e speciale riguardanti gli operatori extracomunitari.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Our objective in this thesis is to study the pseudo-metric and topological structure of the space of group equivariant non-expansive operators (GENEOs). We introduce the notions of compactification of a perception pair, collectionwise surjectivity, and compactification of a space of GENEOs. We obtain some compactification results for perception pairs and the space of GENEOs. We show that when the data spaces are totally bounded and endow the common domains with metric structures, the perception pairs and every collectionwise surjective space of GENEOs can be embedded isometrically into the compact ones through compatible embeddings. An important part of the study of topology of the space of GENEOs is to populate it in a rich manner. We introduce the notion of a generalized permutant and show that this concept too, like that of a permutant, is useful in defining new GENEOs. We define the analogues of some of the aforementioned concepts in a graph theoretic setting, enabling us to use the power of the theory of GENEOs for the study of graphs in an efficient way. We define the notions of a graph perception pair, graph permutant, and a graph GENEO. We develop two models for the theory of graph GENEOs. The first model addresses the case of graphs having weights assigned to their vertices, while the second one addresses weighted on the edges. We prove some new results in the proposed theory of graph GENEOs and exhibit the power of our models by describing their applications to the structural study of simple graphs. We introduce the concept of a graph permutant and show that this concept can be used to define new graph GENEOs between distinct graph perception pairs, thereby enabling us to populate the space of graph GENEOs in a rich manner and shed more light on its structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work deals with some classes of linear second order partial differential operators with non-negative characteristic form and underlying non- Euclidean structures. These structures are determined by families of locally Lipschitz-continuous vector fields in RN, generating metric spaces of Carnot- Carath´eodory type. The Carnot-Carath´eodory metric related to a family {Xj}j=1,...,m is the control distance obtained by minimizing the time needed to go from two points along piecewise trajectories of vector fields. We are mainly interested in the causes in which a Sobolev-type inequality holds with respect to the X-gradient, and/or the X-control distance is Doubling with respect to the Lebesgue measure in RN. This study is divided into three parts (each corresponding to a chapter), and the subject of each one is a class of operators that includes the class of the subsequent one. In the first chapter, after recalling “X-ellipticity” and related concepts introduced by Kogoj and Lanconelli in [KL00], we show a Maximum Principle for linear second order differential operators for which we only assume a Sobolev-type inequality together with a lower terms summability. Adding some crucial hypotheses on measure and on vector fields (Doubling property and Poincar´e inequality), we will be able to obtain some Liouville-type results. This chapter is based on the paper [GL03] by Guti´errez and Lanconelli. In the second chapter we treat some ultraparabolic equations on Lie groups. In this case RN is the support of a Lie group, and moreover we require that vector fields satisfy left invariance. After recalling some results of Cinti [Cin07] about this class of operators and associated potential theory, we prove a scalar convexity for mean-value operators of L-subharmonic functions, where L is our differential operator. In the third chapter we prove a necessary and sufficient condition of regularity, for boundary points, for Dirichlet problem on an open subset of RN related to sub-Laplacian. On a Carnot group we give the essential background for this type of operator, and introduce the notion of “quasi-boundedness”. Then we show the strict relationship between this notion, the fundamental solution of the given operator, and the regularity of the boundary points.