17 resultados para Non-formal learning

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Per comprende più a fondo il problema che le aziende affrontare per formare le persone in grado di gestire processi di innovazione, in particolare di Open Innovation (OI), è stato realizzato nel 2021 uno studio di caso multiplo di un percorso di educazione non formale all’OI realizzato dalla società consortile ART-ER e rivolto ai dottorandi degli atenei emiliano-romagnoli. Nella seconda fase di tale percorso formativo, per rispondere alle sfide di OI lanciate dalle aziende, sono stati costituiti 4 tavoli di lavoro. A ciascun tavolo di lavoro hanno preso parte 3/4 dottorandi, due referenti aziendali, un consulente e un operatore di ART-ER. Il campione complessivo era costituito da 14 dottorandi; 8 referenti aziendali di quattro aziende; 4 membri di una società di consulenza e 4 operatori della società consortile ART-ER. Il seguente interrogativo di ricerca ha guidato l’indagine: l’interazione tra i soggetti coinvolti in ciascun tavolo di lavoro – considerato un singolo caso - si configura come una Comunità di Pratica in grado di favorire lo sviluppo di apprendimenti individuali funzionali a gestire i processi di OI attivati nelle imprese? I dati sono stati raccolti attraverso una ricerca documentale a tavolino, focus group, interviste semistrutturate e un questionario semistrutturato online. L’analisi dei dati è stata effettuata mediante un’analisi qualitativa del contenuto in più fasi con l’ausilio del software MAXQDA. I risultati dimostrano che in tre casi su quattro, i tavoli di lavoro si sono configurati come una Comunità di Pratica. In questi tre tavoli inoltre è emerso lo sviluppo di alcune aree di competenza funzionali alla gestione dei processi di OI. Nella conclusione sono state presentate alcune proposte per la riprogettazione delle future edizioni del percorso formativo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigates an activity that takes place at the intersection between family and school and plays a key role in the building of the family-school partnership largely promoted by education policies: parent-assisted homework. Even though this topic is not new in pedagogical research, what is innovative about this study is the focus on naturally occurring parent-child conversations during homework. Adopting a phenomenological approach to the study of educational events and relying on conversation analysis, the present study analyzes 62 video-recorded sessions of parent-assisted homework collected in 19 Italian families with children aged 6-10 years old (i.e., attending primary school). The analysis of parent-child interactions reveals that parent-assisted homework is not only a site for formal learning but also and primarily a morally dense educational arena. Through the ‘small talks’ that accompany the completion of homework exercises, parents and children evoke and co-construct moral ideologies concerning topics as diverse as learning, school rules and standards, ‘good, involved parenting’, the family-school partnership, children’s autonomy, virtue, time management, and the organization of knowledge and authority in interaction. By taking part in everyday homework interactions, children are educated to culture-specific ethical systems and socialized into morally competent members of their communities, while parents implement the family-school partnership and comply with the model of “involved parent” proposed by pedagogical research and policies. Providing empirical evidence for the moral and educational relevance of ordinary family talk, this study contributes to pedagogical research on family life and promotes parents’ reflexivity about their mundane interactive activities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background There is a wide variation of recurrence risk of Non-small-cell lung cancer (NSCLC) within the same Tumor Node Metastasis (TNM) stage, suggesting that other parameters are involved in determining this probability. Radiomics allows extraction of quantitative information from images that can be used for clinical purposes. The primary objective of this study is to develop a radiomic prognostic model that predicts a 3 year disease free-survival (DFS) of resected Early Stage (ES) NSCLC patients. Material and Methods 56 pre-surgery non contrast Computed Tomography (CT) scans were retrieved from the PACS of our institution and anonymized. Then they were automatically segmented with an open access deep learning pipeline and reviewed by an experienced radiologist to obtain 3D masks of the NSCLC. Images and masks underwent to resampling normalization and discretization. From the masks hundreds Radiomic Features (RF) were extracted using Py-Radiomics. Hence, RF were reduced to select the most representative features. The remaining RF were used in combination with Clinical parameters to build a DFS prediction model using Leave-one-out cross-validation (LOOCV) with Random Forest. Results and Conclusion A poor agreement between the radiologist and the automatic segmentation algorithm (DICE score of 0.37) was found. Therefore, another experienced radiologist manually segmented the lesions and only stable and reproducible RF were kept. 50 RF demonstrated a high correlation with the DFS but only one was confirmed when clinicopathological covariates were added: Busyness a Neighbouring Gray Tone Difference Matrix (HR 9.610). 16 clinical variables (which comprised TNM) were used to build the LOOCV model demonstrating a higher Area Under the Curve (AUC) when RF were included in the analysis (0.67 vs 0.60) but the difference was not statistically significant (p=0,5147).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wide use of e-technologies represents a great opportunity for underserved segments of the population, especially with the aim of reintegrating excluded individuals back into society through education. This is particularly true for people with different types of disabilities who may have difficulties while attending traditional on-site learning programs that are typically based on printed learning resources. The creation and provision of accessible e-learning contents may therefore become a key factor in enabling people with different access needs to enjoy quality learning experiences and services. Another e-learning challenge is represented by m-learning (which stands for mobile learning), which is emerging as a consequence of mobile terminals diffusion and provides the opportunity to browse didactical materials everywhere, outside places that are traditionally devoted to education. Both such situations share the need to access materials in limited conditions and collide with the growing use of rich media in didactical contents, which are designed to be enjoyed without any restriction. Nowadays, Web-based teaching makes great use of multimedia technologies, ranging from Flash animations to prerecorded video-lectures. Rich media in e-learning can offer significant potential in enhancing the learning environment, through helping to increase access to education, enhance the learning experience and support multiple learning styles. Moreover, they can often be used to improve the structure of Web-based courses. These highly variegated and structured contents may significantly improve the quality and the effectiveness of educational activities for learners. For example, rich media contents allow us to describe complex concepts and process flows. Audio and video elements may be utilized to add a “human touch” to distance-learning courses. Finally, real lectures may be recorded and distributed to integrate or enrich on line materials. A confirmation of the advantages of these approaches can be seen in the exponential growth of video-lecture availability on the net, due to the ease of recording and delivering activities which take place in a traditional classroom. Furthermore, the wide use of assistive technologies for learners with disabilities injects new life into e-learning systems. E-learning allows distance and flexible educational activities, thus helping disabled learners to access resources which would otherwise present significant barriers for them. For instance, students with visual impairments have difficulties in reading traditional visual materials, deaf learners have trouble in following traditional (spoken) lectures, people with motion disabilities have problems in attending on-site programs. As already mentioned, the use of wireless technologies and pervasive computing may really enhance the educational learner experience by offering mobile e-learning services that can be accessed by handheld devices. This new paradigm of educational content distribution maximizes the benefits for learners since it enables users to overcome constraints imposed by the surrounding environment. While certainly helpful for users without disabilities, we believe that the use of newmobile technologies may also become a fundamental tool for impaired learners, since it frees them from sitting in front of a PC. In this way, educational activities can be enjoyed by all the users, without hindrance, thus increasing the social inclusion of non-typical learners. While the provision of fully accessible and portable video-lectures may be extremely useful for students, it is widely recognized that structuring and managing rich media contents for mobile learning services are complex and expensive tasks. Indeed, major difficulties originate from the basic need to provide a textual equivalent for each media resource composing a rich media Learning Object (LO). Moreover, tests need to be carried out to establish whether a given LO is fully accessible to all kinds of learners. Unfortunately, both these tasks are truly time-consuming processes, depending on the type of contents the teacher is writing and on the authoring tool he/she is using. Due to these difficulties, online LOs are often distributed as partially accessible or totally inaccessible content. Bearing this in mind, this thesis aims to discuss the key issues of a system we have developed to deliver accessible, customized or nomadic learning experiences to learners with different access needs and skills. To reduce the risk of excluding users with particular access capabilities, our system exploits Learning Objects (LOs) which are dynamically adapted and transcoded based on the specific needs of non-typical users and on the barriers that they can encounter in the environment. The basic idea is to dynamically adapt contents, by selecting them from a set of media resources packaged in SCORM-compliant LOs and stored in a self-adapting format. The system schedules and orchestrates a set of transcoding processes based on specific learner needs, so as to produce a customized LO that can be fully enjoyed by any (impaired or mobile) student.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La tesi affronta le problematiche relative ai nuovi scenari educativi nella cosiddetta Società della Conoscenza e alle sfide che essa richiede alla didattica nei nuovi “ambienti” formativi. Partendo dall’analisi della definizione della stessa come Società della Conoscenza si cerca di darne una lettura che ne metta in luce gli elementi principali che la caratterizzano aprendo alla riflessione sullo sguardo che essa dà al suo futuro e agli scenari verso i quali si orientano le sue sfide cognitive ed educative. In tale analisi non può mancare una riflessione sul legame tra la società contemporanea e le cosiddette nuove tecnologie (ICT: Information and Comunication Technologies). Le ICT, infatti, in misura sempre maggiore, hanno invaso la società e influenzato l’evoluzione della stessa assumendo un ruolo significativo nella vita quotidiana e nell’affermarsi della società della conoscenza. Il percorso di ricerca prende il via da questi interrogativi per ampliare la riflessione sulle nuove frontiere dell’educazione nella società della conoscenza. Quest’ultima, infatti, così come si caratterizza e come si evolve, identificando la sua priorità non solo nella diffusione dell’informazione, ma anche e soprattutto nella “costruzione” di conoscenza, impone un nuovo modo di pensare e approcciarsi all’educazione e alla formazione. Il longlife learning diventa l’elemento centrale ma non va inteso solo come possibilità date all’individuo adulto di riprendere percorsi formativi lasciati o intraprenderne di nuovi. Quello che cambia è la finalità stessa della formazione: è il concetto dell’apprendimento come potenzialità individuale (empowerment). Non basta avere accesso e acquisire un numero sempre maggiore di informazioni ma occorre sviluppare la capacità di acquisire strategicamente le informazioni per essere capaci di affrontare i continui cambiamenti e costruire nuove forme di sapere condiviso. Sul piano operativo le ICT permettono numerose nuove possibilità per la formazione, sia come strumenti a supporto della didattica, sia come mezzi di trasmissione delle informazioni e costruzione di conoscenza. L’e-learning si afferma con una sua impostazione e una sua metodologia, nonché con i suoi “oggetti” e i suoi “ambienti”. Nella tesi vengono illustrate le principali problematiche da considerare per la costruzione di percorsi formativi in rete (strumenti, contenuti, ruoli, comunicazione, valutazione) per presentare, infine, i materiali prodotti dall’autrice per l’erogazione on line di moduli didattici in due Unità Formative.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis was to investigate the respective contribution of prior information and sensorimotor constraints to action understanding, and to estimate their consequences on the evolution of human social learning. Even though a huge amount of literature is dedicated to the study of action understanding and its role in social learning, these issues are still largely debated. Here, I critically describe two main perspectives. The first perspective interprets faithful social learning as an outcome of a fine-grained representation of others’ actions and intentions that requires sophisticated socio-cognitive skills. In contrast, the second perspective highlights the role of simpler decision heuristics, the recruitment of which is determined by individual and ecological constraints. The present thesis aims to show, through four experimental works, that these two contributions are not mutually exclusive. A first study investigates the role of the inferior frontal cortex (IFC), the anterior intraparietal area (AIP) and the primary somatosensory cortex (S1) in the recognition of other people’s actions, using a transcranial magnetic stimulation adaptation paradigm (TMSA). The second work studies whether, and how, higher-order and lower-order prior information (acquired from the probabilistic sampling of past events vs. derived from an estimation of biomechanical constraints of observed actions) interacts during the prediction of other people’s intentions. Using a single-pulse TMS procedure, the third study investigates whether the interaction between these two classes of priors modulates the motor system activity. The fourth study tests the extent to which behavioral and ecological constraints influence the emergence of faithful social learning strategies at a population level. The collected data contribute to elucidate how higher-order and lower-order prior expectations interact during action prediction, and clarify the neural mechanisms underlying such interaction. Finally, these works provide/open promising perspectives for a better understanding of social learning, with possible extensions to animal models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different types of proteins exist with diverse functions that are essential for living organisms. An important class of proteins is represented by transmembrane proteins which are specifically designed to be inserted into biological membranes and devised to perform very important functions in the cell such as cell communication and active transport across the membrane. Transmembrane β-barrels (TMBBs) are a sub-class of membrane proteins largely under-represented in structure databases because of the extreme difficulty in experimental structure determination. For this reason, computational tools that are able to predict the structure of TMBBs are needed. In this thesis, two computational problems related to TMBBs were addressed: the detection of TMBBs in large datasets of proteins and the prediction of the topology of TMBB proteins. Firstly, a method for TMBB detection was presented based on a novel neural network framework for variable-length sequence classification. The proposed approach was validated on a non-redundant dataset of proteins. Furthermore, we carried-out genome-wide detection using the entire Escherichia coli proteome. In both experiments, the method significantly outperformed other existing state-of-the-art approaches, reaching very high PPV (92%) and MCC (0.82). Secondly, a method was also introduced for TMBB topology prediction. The proposed approach is based on grammatical modelling and probabilistic discriminative models for sequence data labeling. The method was evaluated using a newly generated dataset of 38 TMBB proteins obtained from high-resolution data in the PDB. Results have shown that the model is able to correctly predict topologies of 25 out of 38 protein chains in the dataset. When tested on previously released datasets, the performances of the proposed approach were measured as comparable or superior to the current state-of-the-art of TMBB topology prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many application domains data can be naturally represented as graphs. When the application of analytical solutions for a given problem is unfeasible, machine learning techniques could be a viable way to solve the problem. Classical machine learning techniques are defined for data represented in a vectorial form. Recently some of them have been extended to deal directly with structured data. Among those techniques, kernel methods have shown promising results both from the computational complexity and the predictive performance point of view. Kernel methods allow to avoid an explicit mapping in a vectorial form relying on kernel functions, which informally are functions calculating a similarity measure between two entities. However, the definition of good kernels for graphs is a challenging problem because of the difficulty to find a good tradeoff between computational complexity and expressiveness. Another problem we face is learning on data streams, where a potentially unbounded sequence of data is generated by some sources. There are three main contributions in this thesis. The first contribution is the definition of a new family of kernels for graphs based on Directed Acyclic Graphs (DAGs). We analyzed two kernels from this family, achieving state-of-the-art results from both the computational and the classification point of view on real-world datasets. The second contribution consists in making the application of learning algorithms for streams of graphs feasible. Moreover,we defined a principled way for the memory management. The third contribution is the application of machine learning techniques for structured data to non-coding RNA function prediction. In this setting, the secondary structure is thought to carry relevant information. However, existing methods considering the secondary structure have prohibitively high computational complexity. We propose to apply kernel methods on this domain, obtaining state-of-the-art results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le tecniche di Machine Learning sono molto utili in quanto consento di massimizzare l’utilizzo delle informazioni in tempo reale. Il metodo Random Forests può essere annoverato tra le tecniche di Machine Learning più recenti e performanti. Sfruttando le caratteristiche e le potenzialità di questo metodo, la presente tesi di dottorato affronta due casi di studio differenti; grazie ai quali è stato possibile elaborare due differenti modelli previsionali. Il primo caso di studio si è incentrato sui principali fiumi della regione Emilia-Romagna, caratterizzati da tempi di risposta molto brevi. La scelta di questi fiumi non è stata casuale: negli ultimi anni, infatti, in detti bacini si sono verificati diversi eventi di piena, in gran parte di tipo “flash flood”. Il secondo caso di studio riguarda le sezioni principali del fiume Po, dove il tempo di propagazione dell’onda di piena è maggiore rispetto ai corsi d’acqua del primo caso di studio analizzato. Partendo da una grande quantità di dati, il primo passo è stato selezionare e definire i dati in ingresso in funzione degli obiettivi da raggiungere, per entrambi i casi studio. Per l’elaborazione del modello relativo ai fiumi dell’Emilia-Romagna, sono stati presi in considerazione esclusivamente i dati osservati; a differenza del bacino del fiume Po in cui ai dati osservati sono stati affiancati anche i dati di previsione provenienti dalla catena modellistica Mike11 NAM/HD. Sfruttando una delle principali caratteristiche del metodo Random Forests, è stata stimata una probabilità di accadimento: questo aspetto è fondamentale sia nella fase tecnica che in fase decisionale per qualsiasi attività di intervento di protezione civile. L'elaborazione dei dati e i dati sviluppati sono stati effettuati in ambiente R. Al termine della fase di validazione, gli incoraggianti risultati ottenuti hanno permesso di inserire il modello sviluppato nel primo caso studio all’interno dell’architettura operativa di FEWS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Besides increasing the share of electric and hybrid vehicles, in order to comply with more stringent environmental protection limitations, in the mid-term the auto industry must improve the efficiency of the internal combustion engine and the well to wheel efficiency of the employed fuel. To achieve this target, a deeper knowledge of the phenomena that influence the mixture formation and the chemical reactions involving new synthetic fuel components is mandatory, but complex and time intensive to perform purely by experimentation. Therefore, numerical simulations play an important role in this development process, but their use can be effective only if they can be considered accurate enough to capture these variations. The most relevant models necessary for the simulation of the reacting mixture formation and successive chemical reactions have been investigated in the present work, with a critical approach, in order to provide instruments to define the most suitable approaches also in the industrial context, which is limited by time constraints and budget evaluations. To overcome these limitations, new methodologies have been developed to conjugate detailed and simplified modelling techniques for the phenomena involving chemical reactions and mixture formation in non-traditional conditions (e.g. water injection, biofuels etc.). Thanks to the large use of machine learning and deep learning algorithms, several applications have been revised or implemented, with the target of reducing the computing time of some traditional tasks by orders of magnitude. Finally, a complete workflow leveraging these new models has been defined and used for evaluating the effects of different surrogate formulations of the same experimental fuel on a proof-of-concept GDI engine model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Standard Model (SM) of particle physics predicts the existence of a Higgs field responsible for the generation of particles' mass. However, some aspects of this theory remain unsolved, supposing the presence of new physics Beyond the Standard Model (BSM) with the production of new particles at a higher energy scale compared to the current experimental limits. The search for additional Higgs bosons is, in fact, predicted by theoretical extensions of the SM including the Minimal Supersymmetry Standard Model (MSSM). In the MSSM, the Higgs sector consists of two Higgs doublets, resulting in five physical Higgs particles: two charged bosons $H^{\pm}$, two neutral scalars $h$ and $H$, and one pseudoscalar $A$. The work presented in this thesis is dedicated to the search of neutral non-Standard Model Higgs bosons decaying to two muons in the model independent MSSM scenario. Proton-proton collision data recorded by the CMS experiment at the CERN LHC at a center-of-mass energy of 13 TeV are used, corresponding to an integrated luminosity of $35.9\ \text{fb}^{-1}$. Such search is sensitive to neutral Higgs bosons produced either via gluon fusion process or in association with a $\text{b}\bar{\text{b}}$ quark pair. The extensive usage of Machine and Deep Learning techniques is a fundamental element in the discrimination between signal and background simulated events. A new network structure called parameterised Neural Network (pNN) has been implemented, replacing a whole set of single neural networks trained at a specific mass hypothesis value with a single neural network able to generalise well and interpolate in the entire mass range considered. The results of the pNN signal/background discrimination are used to set a model independent 95\% confidence level expected upper limit on the production cross section times branching ratio, for a generic $\phi$ boson decaying into a muon pair in the 130 to 1000 GeV range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whole Exome Sequencing (WES) is rapidly becoming the first-tier test in clinics, both thanks to its declining costs and the development of new platforms that help clinicians in the analysis and interpretation of SNV and InDels. However, we still know very little on how CNV detection could increase WES diagnostic yield. A plethora of exome CNV callers have been published over the years, all showing good performances towards specific CNV classes and sizes, suggesting that the combination of multiple tools is needed to obtain an overall good detection performance. Here we present TrainX, a ML-based method for calling heterozygous CNVs in WES data using EXCAVATOR2 Normalized Read Counts. We select males and females’ non pseudo-autosomal chromosome X alignments to construct our dataset and train our model, make predictions on autosomes target regions and use HMM to call CNVs. We compared TrainX against a set of CNV tools differing for the detection method (GATK4 gCNV, ExomeDepth, DECoN, CNVkit and EXCAVATOR2) and found that our algorithm outperformed them in terms of stability, as we identified both deletions and duplications with good scores (0.87 and 0.82 F1-scores respectively) and for sizes reaching the minimum resolution of 2 target regions. We also evaluated the method robustness using a set of WES and SNP array data (n=251), part of the Italian cohort of Epi25 collaborative, and were able to retrieve all clinical CNVs previously identified by the SNP array. TrainX showed good accuracy in detecting heterozygous CNVs of different sizes, making it a promising tool to use in a diagnostic setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the CERN LHC program underway, there has been an acceleration of data growth in the High Energy Physics (HEP) field and the usage of Machine Learning (ML) in HEP will be critical during the HL-LHC program when the data that will be produced will reach the exascale. ML techniques have been successfully used in many areas of HEP nevertheless, the development of a ML project and its implementation for production use is a highly time-consuming task and requires specific skills. Complicating this scenario is the fact that HEP data is stored in ROOT data format, which is mostly unknown outside of the HEP community. The work presented in this thesis is focused on the development of a ML as a Service (MLaaS) solution for HEP, aiming to provide a cloud service that allows HEP users to run ML pipelines via HTTP calls. These pipelines are executed by using the MLaaS4HEP framework, which allows reading data, processing data, and training ML models directly using ROOT files of arbitrary size from local or distributed data sources. Such a solution provides HEP users non-expert in ML with a tool that allows them to apply ML techniques in their analyses in a streamlined manner. Over the years the MLaaS4HEP framework has been developed, validated, and tested and new features have been added. A first MLaaS solution has been developed by automatizing the deployment of a platform equipped with the MLaaS4HEP framework. Then, a service with APIs has been developed, so that a user after being authenticated and authorized can submit MLaaS4HEP workflows producing trained ML models ready for the inference phase. A working prototype of this service is currently running on a virtual machine of INFN-Cloud and is compliant to be added to the INFN Cloud portfolio of services.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reinforcement Learning (RL) provides a powerful framework to address sequential decision-making problems in which the transition dynamics is unknown or too complex to be represented. The RL approach is based on speculating what is the best decision to make given sample estimates obtained from previous interactions, a recipe that led to several breakthroughs in various domains, ranging from game playing to robotics. Despite their success, current RL methods hardly generalize from one task to another, and achieving the kind of generalization obtained through unsupervised pre-training in non-sequential problems seems unthinkable. Unsupervised RL has recently emerged as a way to improve generalization of RL methods. Just as its non-sequential counterpart, the unsupervised RL framework comprises two phases: An unsupervised pre-training phase, in which the agent interacts with the environment without external feedback, and a supervised fine-tuning phase, in which the agent aims to efficiently solve a task in the same environment by exploiting the knowledge acquired during pre-training. In this thesis, we study unsupervised RL via state entropy maximization, in which the agent makes use of the unsupervised interactions to pre-train a policy that maximizes the entropy of its induced state distribution. First, we provide a theoretical characterization of the learning problem by considering a convex RL formulation that subsumes state entropy maximization. Our analysis shows that maximizing the state entropy in finite trials is inherently harder than RL. Then, we study the state entropy maximization problem from an optimization perspective. Especially, we show that the primal formulation of the corresponding optimization problem can be (approximately) addressed through tractable linear programs. Finally, we provide the first practical methodologies for state entropy maximization in complex domains, both when the pre-training takes place in a single environment as well as multiple environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Machine (and deep) learning technologies are more and more present in several fields. It is undeniable that many aspects of our society are empowered by such technologies: web searches, content filtering on social networks, recommendations on e-commerce websites, mobile applications, etc., in addition to academic research. Moreover, mobile devices and internet sites, e.g., social networks, support the collection and sharing of information in real time. The pervasive deployment of the aforementioned technological instruments, both hardware and software, has led to the production of huge amounts of data. Such data has become more and more unmanageable, posing challenges to conventional computing platforms, and paving the way to the development and widespread use of the machine and deep learning. Nevertheless, machine learning is not only a technology. Given a task, machine learning is a way of proceeding (a way of thinking), and as such can be approached from different perspectives (points of view). This, in particular, will be the focus of this research. The entire work concentrates on machine learning, starting from different sources of data, e.g., signals and images, applied to different domains, e.g., Sport Science and Social History, and analyzed from different perspectives: from a non-data scientist point of view through tools and platforms; setting a problem stage from scratch; implementing an effective application for classification tasks; improving user interface experience through Data Visualization and eXtended Reality. In essence, not only in a quantitative task, not only in a scientific environment, and not only from a data-scientist perspective, machine (and deep) learning can do the difference.