7 resultados para Non-canonical Wnt pathway
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Eukaryotic ribosomal DNA constitutes a multi gene family organized in a cluster called nucleolar organizer region (NOR); this region is composed usually by hundreds to thousands of tandemly repeated units. Ribosomal genes, being repeated sequences, evolve following the typical pattern of concerted evolution. The autonomous retroelement R2 inserts in the ribosomal gene 28S, leading to defective 28S rDNA genes. R2 element, being a retrotransposon, performs its activity in the genome multiplying its copy number through a “copy and paste” mechanism called target primed reverse transcription. It consists in the retrotranscription of the element’s mRNA into DNA, then the DNA is integrated in the target site. Since the retrotranscription can be interrupted, but the integration will be carried out anyway, truncated copies of the element will also be present in the genome. The study of these truncated variants is a tool to examine the activity of the element. R2 phylogeny appears, in general, not consistent with that of its hosts, except some cases (e.g. Drosophila spp. and Reticulitermes spp.); moreover R2 is absent in some species (Fugu rubripes, human, mouse, etc.), while other species have more R2 lineages in their genome (the turtle Mauremys reevesii, the Japanese beetle Popilia japonica, etc). R2 elements here presented are isolated in 4 species of notostracan branchiopods and in two species of stick insects, whose reproductive strategies range from strict gonochorism to unisexuality. From sequencing data emerges that in Triops cancriformis (Spanish gonochoric population), in Lepidurus arcticus (two putatively unisexual populations from Iceland) and in Bacillus rossius (gonochoric population from Capalbio) the R2 elements are complete and encode functional proteins, reflecting the general features of this family of transposable elements. On the other hand, R2 from Italian and Austrian populations of T. cancriformis (respectively unisexual and hermaphroditic), Lepidurus lubbocki (two elements within the same Italian population, gonochoric but with unfunctional males) and Bacillus grandii grandii (gonochoric population from Ponte Manghisi) have sequences that encode incomplete or non-functional proteins in which it is possible to recognize only part of the characteristic domains. In Lepidurus couesii (Italian gonochoric populations) different elements were found as in L. lubbocki, and the sequencing is still in progress. Two hypothesis are given to explain the inconsistency of R2/host phylogeny: vertical inheritance of the element followed by extinction/diversification or horizontal transmission. My data support previous study that state the vertical transmission as the most likely explanation; nevertheless horizontal transfer events can’t be excluded. I also studied the element’s activity in Spanish populations of T. cancriformis, in L. lubbocki, in L. arcticus and in gonochoric and parthenogenetic populations of B. rossius. In gonochoric populations of T. cancriformis and B. rossius I found that each individual has its own private set of truncated variants. The situation is the opposite for the remaining hermaphroditic/parthenogenetic species and populations, all individuals sharing – in the so far analyzed samples - the majority of variants. This situation is very interesting, because it isn’t concordant with the Muller’s ratchet theory that hypothesizes the parthenogenetic populations being either devoided of transposable elements or TEs overloaded. My data suggest a possible epigenetic mechanism that can block the retrotransposon activity, and in this way deleterious mutations don’t accumulate.
Resumo:
Medulloblastoma (MB) is a paediatric malignant brain tumour, sensitive to ionizing radiations (IR). However radiotherapy has detrimental effects on long-term survivors and the tumour is incurable in a third of patients, due to intrinsic radioresistance. Alterations of the Wnt pathway distinguish a molecular subgroup of MBs and nuclear beta-catenin, indicative of activated Wnt, is associated with good outcome in MB. Therefore there are increasing evidences about Wnt involvement in radio-response: IR induce activation of Wnt signalling with nuclear translocation of beta-catenin in MB cell lines. We studied effects of Wnt pathway activation in a MB cell line with p53 wild-type: UW228-1. Cells were stably transfected with a beta-catenin constitutively active and assessed for growth curves, mortality rate, invasiveness and differentiation. Firstly, activation of Wnt pathway by itself induced a slower cell growth and a higher mortality. After IR treatment, nuclear beta-catenin further inhibited cell growth, increasing mortality. Cell invasiveness was strongly inhibited by Wnt activation. Furthermore, Wnt cell population was characterized by club shaped cells with long cytoplasmic extensions containing neurofilaments, suggesting a neural differentiation of this cell line. These findings suggest that nuclear beta-catenin may leads to a less aggressive phenotype and increases radio-sensitivity in MB, accounting for its favourable prognostic value. In the future, Wnt/beta-catenin signalling will be considered as a molecular therapeutic target to develop new drugs for the treatment of MB.
Resumo:
Tanchirasi (TNKS) è un membro della superfamiglia delle PARP (Poli ADP-Ribosio Polimerasi). TNKS è coinvolta nella stabilizzazione della subunità catalitca del complesso proteico DNA-PK (protein chinasi DNA-dipendente), la DNA-PKcs. Questa proteina è fondamentale per il corretto funzionamento del meccanismo di riparo del DNA chiamato "Saldatura Non Omologa delle Estremità" (NHEJ). La deplezione di TNKS induce una degradazione della DNA-PKcs e una maggiore sensibilità alle radiazioni ionizzanti (RI). TNKS è inoltre un regolatore negativo di axina e di conseguenza un attivatore del pathway di WNT; l'inibizione quindi di TNKS induce anche una inibizione del pathway di WNT. Alterazioni in questo signalling si riscontrano frequentemente nel Medulloblastoma (MB), il tumore cerebrale embrionale più comune dell'infanzia. La radioterapia post-operatoria risulta essere molto efficacia in questa neoplasia, ma causa gravi effetti collaterali e un terzo dei pazienti presenta radioresistenza intrinseca. Un'importante sfida per la ricerca è quindi l'aumento della radiosensibilità tumorale. In questo lavoro, abbiamo studiato gli effetti dell'inibizione farmacologica di TNKS in linee cellulari di MB umano, mediante la small molecule XAV939, potente e specifico inibitore di TNKS. Il trattamento con XAV939 induce una consistente inibizione della capacità proliferativa e clonogenica, non correlata ad un aumento della mortalità cellulare, indicando una bassa tossicità legata alla molecola. Il co-trattamento di XAV939 e RI (γ-ray, dose 2 Gy) causa una ulteriore inibizione della proliferazione cellulare e della capacità di formare colonie. Abbiamo inoltre constatato, mediante Neutral Comet Assay, una minore efficacia nel riparo del DNA in cellule irradiate trattate con XAV939, indicando un effettivo aumento della radiosensibilità in cellule di MB trattate con l'inibitore di TNKS. L'aumentata mortalità cellulare in cellule tumorali trattate con XAV939 e RI ha confermato la nostra ipotesi. Il nostro studio in vitro indica come TNKS possa essere un utile target terapeutico per rendere più efficace l'attuale terapia contro il MB.
Resumo:
Group B Streptococcus (GBS) is a Gram-positive human pathogen representing one of the most common causes of life-threatening bacterial infections such as sepsis and meningitis in neonates. Covalently polymerized pilus-like structures have been discovered in GBS as important virulence factors as well as vaccine candidates. Pili are protein polymers forming long and thin filamentous structures protruding from bacterial cells, mediating adhesion and colonization to host cells. Gram-positive bacteria, including GBS, build pili on their cell surface via a class C sortase-catalyzed transpeptidation mechanism from pilin protein substrates that are the backbone protein forming the pilus shaft and two ancillary proteins. Also the cell-wall anchoring of the pilus polymers made of covalently linked pilin subunits is mediated by a sortase enzyme. GBS expresses three structurally distinct pilus types (type 1, 2a and 2b). Although the mechanisms of assembly and cell wall anchoring of GBS types 1 and 2a pili have been investigated, those of pilus 2b are not understood until now. Pilus 2b is frequently found in ST-17 strains that are mostly associated with meningitis and high mortality rate especially in infants. In this work the assembly mechanism of GBS pilus type 2b has been elucidated by dissecting through genetic, biochemical and structural studies the role of the two pilus-associated sortases. The most significant findings show that pilus 2b assembly appears “non-canonical”, differing significantly from current pilus assembly models in Gram-positive pathogens. Only sortase-C1 is involved in pilin polymerization, while the sortase-C2 does not act as a pilin polymerase, but it is involved in cell-wall pilus anchoring. Our findings provide new insights into pili biogenesis in Gram-positive bacteria. Moreover, the role of this pilus type during host infection has been investigated. By using a mouse model of meningitis we demonstrated that type 2b pilus contributes to pathogenesis of meningitis in vivo.
Resumo:
Molecular profiling of Peripheral T-cell lymphomas not otherwise specified Peripheral T-cell lymphomas (PTCLs) are a heterogeneous group of tumors that the WHO classification basically subdivides into specified and not otherwise specified (NOS). In Western countries, they represent around 12% of all non-Hodgkin's lymphomas. In particular, PTCL/NOS is the commonest subtype, corresponding to about 60-70% of all T-cell lymphomas. However, it remains a complex entity showing great variety regarding either morphology, immunophenotype or clinical behavior. Specially, the molecular pathology of these tumors is still poorly known. In fact, many alteration were found, but no single genes were demonstrated to have a pathogenetic role. Recently, gene expression profiling (GEP) allowed the identification of PTCL/NOS-associated molecular signatures, leading to better understanding of their histogenesis, pathogenesis and prognostication. Interestingly, proliferation pathways are commonly altered in PTCLs, being highly proliferative cases characterized by poorer prognosis. In this study, we aimed to investigate the possible role in PTCL/NOS pathogenesis of selected molecules, known to be relevant for proliferation control. In particular, we analyzed the cell cycle regulators PTEN and CDKN1B/p27, the NF-kB pathway, and the tyrosin kinase PDGFR. First, we found that PTEN and p27 seem to be regulated in PTCL/NOS as in normal T-lymphocytes, as to what expression and cellular localization are concerned, and do not present structural abnormalities in the vast majority of PTCL/NOS. Secondly, NF-kB pathway appeared to be variably activated in PTCL/NOS. In particular, according to NF-kB gene expression levels, the tumors could be divided into two clusters (C1 and C2). Specially, C1 corresponded to cases presenting with a global down-regulation of the entire pathway, while C2 showed over-expression of genes involved in TNF signaling. Notably, by immunohistochemistry, we showed that either the canonical or the alternative NK-kB pathway were activated in around 40% of cases. Finally, we found PGDFRA to be consistently over-expressed (at mRNA and protein level) and activated in almost all PTCLs/NOS. Noteworthy, when investigating possible causes for PDGFRA deregulation, we had evidences that PDGFR over-expression is due to the absence of miR-152, which appeared to be responsible for PDGFRA silencing in normal T-cells. Furthermore, we could demonstrate that its aberrant activation is sustained by an autocrine loop. Importantly, this is the first case, to the best of our knowledge, of hematological tumor in which tyrosin kinase aberrant activity is determined by deregulated miRNA expression and autocrine loop activation. Taken together, our results provide novel insight in PTCL/NOS pathogenesis by opening new intriguing scenarios for innovative therapeutic interventions.
Resumo:
Anhidrotic Ectodermal Dysplasia (EDA), is the most frequent form among Ectodermal Dysplasias, hereditary genetic disorders causing ectodermal appendages defective development. Indeed, EDA is characterized by defective formation of hair follicles, sweat glands and teeth both in human patients and animals. EDA, the gene mutated in Anhidrotic Ectodermal Dysplasia, encodes Ectodysplasin, a TNF family member that activates NF-kB mediated transcription. This disease can occur with mutations in other EDA-NF-kB pathway members, as EDA receptor, EDAR and its adapter, EDARADD. Moreover, mutations in TRAF6, NEMO, IKB and NF-kBs genes are responsible for Immunodeficiency associated EDA (EDA-ID). Several molecules, as SHH, WNT/DKK, BMP and LTβ, have already been reported to be EDA pathway regulators or effectors although the knowledge of the full spectrum of EDA targets remains incomplete. During the first part of the research project a gene expression analysis was performed in primary keratinocytes from Wild-type and Tabby (EDA model mouse) mice to identify novel EDA target genes. Earlier expression profiling at various developmental time points in Tabby and Wild-type mouse skin reported genes differentially expressed in the two samples and, to increase the resolution to find genes whose expression may be restricted to epidermal cells, the study was extended to primary keratinocyte cultures established from E19 Wild-type and Tabby skin. Using microarrays bearing 44,000 gene probes, we found 385 “preliminary candidate” genes whose expression was significantly affected by Eda defect. By comparing expression profiles to those from Eda-A1 (where Eda-A1 is highly expressed) transgenic skin, we restricted the list to 38 “candidate EDA targets”, 14 of which were already known to be expressed in hair follicles or epidermis. This work confirmed expression changes for 3 selected genes, Tbx1, Bmp7, and Jag1, both in primary keratinocytes and in Wild-type and Tabby whole skin, by Q-PCR and Western blotting analyses. Thus, this study detected novel candidate pathways downstream of EDA. In the second part of the research project, plasmid constructs were produced and analyzed to create a transgenic mouse model for Immunodeficiency associated EDA disease (XL-EDA-ID). In particular, plasmids containing mouse Wild-type and mutated Nemo cDNA under K-17 epidermis-specific promoter control and a Flag tag, were prepared, on the way to confine transgene expression to mice epidermis and to determine EDA phenotype without immunodeficiency for a comparison to Tabby model phenotype. EDA-ID mutations reported in patients and selected for this study are: C417R (C409R in mouse), causing Zinc Finger protein domain destabilization and A288G (A282G in mouse) affecting oligomerization of the protein. Moreover, the ex-novo mutation, ZnF, C-terminal Zinc Finger domain deletion, was tested. Thus, the constructs were analyzed by transient transfection, Western blotting and luciferase assays techniques, detecting Nemo Wild-type and mutant protein products and residue NF-kB activity in presence of mutants, after TNF stimulation. In particular, MEF_Nemo-/- cell line was used to monitor NF-kB activity without endogenous Nemo gene. Results show reduced NF-kB activity in presence of mutated Nemo forms compared to Wild-type: 81% for A282G (A288G in human); 24% for C409R (C417R in human); 15% for ZnF. C409R mutation (C417R in human), reported in 6 EDA-ID human patients, was selected to prepare transgenic model mouse. Mice (white, FVP) born following K17-promoter-Flag-Nemo_C409R plasmid region pronuclear injection, were analyzed for the transgene presence in the genotype and a preliminar examination of their phenotype was performed. In particular, one mouse showed considerable coat defects if compared to Wild-type mice. This preliminar analysis suggests a possible influence of Nemo mutant over-expression in epidermis without immunodeficiency. Still, more microscopic studies to analyze hair subtypes, Guard, Awl and Zigzag (usually alterated inTabby mouse model), Immunohistochemistry experiments to detect epidermis restricted Nemo expression and sweat glands analysis, will follow. This and other transgene positive mice will be crossed with black mice C57BL6 to obtain at least two indipendent agouti lines to analyze. Theses mice will be used in EDA target genes detection through microarrays. Following, plasmid constructs containing other Nemo mutant forms (A282G and ZnF) might be studied by the same experimental approaches to prepare more transgenic model mice to compare to Nemo_C409R and Tabby mouse models.
Resumo:
Le cellule staminali/stromali mesenchimali umane (hMSC) sono attualmente applicate in diversi studi clinici e la loro efficacia è spesso legata alla loro capacità di raggiungere il sito d’interesse. Poco si sa sul loro comportamento migratorio e i meccanismi che ne sono alla base. Perciò, questo studio è stato progettato per comprendere il comportamento migratorio delle hMSC e il coinvolgimento di Akt, nota anche come proteina chinasi B. L’espressione e la fosforilazione della proteinchinasi Akt è stata studiata mediante Western blotting. Oltre al time-lapse in vivo imaging, il movimento cellulare è stato monitorato sia mediante saggi tridimensionali, con l’uso di transwell, che mediante saggi bidimensionali, attraverso la tecnica del wound healing. Le prove effettuate hanno rivelato che le hMSC hanno una buona capacità migratoria. E’ stato osservato che la proteinchinasi B/Akt ha elevati livelli basali di fosforilazione in queste cellule. Inoltre, la caratterizzazione delle principali proteine di regolazione ed effettrici, a monte e a valle di Akt, ha permesso di concludere che la cascata di reazioni della via di segnale anche nelle hMSC segue un andamento canonico. Specifici inibitori farmacologici sono stati utilizzati per determinare il potenziale meccanismo coinvolto nella migrazione cellulare e nell'invasione. L’inibizione della via PI3K/Akt determina una significativa riduzione della migrazione. L’utilizzo di inibitori farmacologici specifici per le singole isoforme di Akt ha permesso di discriminare il ruolo diverso di Akt1 e Akt2 nella migrazione delle hMSC. E’ stato infatti dimostrato che l'inattivazione di Akt2, ma non quella di Akt1, diminuisce significativamente la migrazione cellulare. Nel complesso i risultati ottenuti indicano che l'attivazione di Akt2 svolge un ruolo critico nella migrazione della hMSC; ulteriori studi sono necessari per approfondire la comprensione del fenomeno. La dimostrazione che l’isoforma Akt2 è necessaria per la chemiotassi diretta delle hMSC, rende questa chinasi un potenziale bersaglio farmacologico per modulare la loro migrazione.