11 resultados para Nociceptive modulation
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The organization of the nervous and immune systems is characterized by obvious differences and striking parallels. Both systems need to relay information across very short and very long distances. The nervous system communicates over both long and short ranges primarily by means of more or less hardwired intercellular connections, consisting of axons, dendrites, and synapses. Longrange communication in the immune system occurs mainly via the ordered and guided migration of immune cells and systemically acting soluble factors such as antibodies, cytokines, and chemokines. Its short-range communication either is mediated by locally acting soluble factors or transpires during direct cell–cell contact across specialized areas called “immunological synapses” (Kirschensteiner et al., 2003). These parallels in intercellular communication are complemented by a complex array of factors that induce cell growth and differentiation: these factors in the immune system are called cytokines; in the nervous system, they are called neurotrophic factors. Neither the cytokines nor the neurotrophic factors appear to be completely exclusive to either system (Neumann et al., 2002). In particular, mounting evidence indicates that some of the most potent members of the neurotrophin family, for example, nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF), act on or are produced by immune cells (Kerschensteiner et al., 1999) There are, however, other neurotrophic factors, for example the insulin-like growth factor-1 (IGF-1), that can behave similarly (Kermer et al., 2000). These factors may allow the two systems to “cross-talk” and eventually may provide a molecular explanation for the reports that inflammation after central nervous system (CNS) injury has beneficial effects (Moalem et al., 1999). In order to shed some more light on such a cross-talk, therefore, transcription factors modulating mu-opioid receptor (MOPr) expression in neurons and immune cells are here investigated. More precisely, I focused my attention on IGF-I modulation of MOPr in neurons and T-cell receptor induction of MOPr expression in T-lymphocytes. Three different opioid receptors [mu (MOPr), delta (DOPr), and kappa (KOPr)] belonging to the G-protein coupled receptor super-family have been cloned. They are activated by structurallyrelated exogenous opioids or endogenous opioid peptides, and contribute to the regulation of several functions including pain transmission, respiration, cardiac and gastrointestinal functions, and immune response (Zollner and Stein 2007). MOPr is expressed mainly in the central nervous system where it regulates morphine-induced analgesia, tolerance and dependence (Mayer and Hollt 2006). Recently, induction of MOPr expression in different immune cells induced by cytokines has been reported (Kraus et al., 2001; Kraus et al., 2003). The human mu-opioid receptor gene (OPRM1) promoter is of the TATA-less type and has clusters of potential binding sites for different transcription factors (Law et al. 2004). Several studies, primarily focused on the upstream region of the OPRM1 promoter, have investigated transcriptional regulation of MOPr expression. Presently, however, it is still not completely clear how positive and negative transcription regulators cooperatively coordinate cellor tissue-specific transcription of the OPRM1 gene, and how specific growth factors influence its expression. IGF-I and its receptors are widely distributed throughout the nervous system during development, and their involvement in neurogenesis has been extensively investigated (Arsenijevic et al. 1998; van Golen and Feldman 2000). As previously mentioned, such neurotrophic factors can be also produced and/or act on immune cells (Kerschenseteiner et al., 2003). Most of the physiologic effects of IGF-I are mediated by the type I IGF surface receptor which, after ligand binding-induced autophosphorylation, associates with specific adaptor proteins and activates different second messengers (Bondy and Cheng 2004). These include: phosphatidylinositol 3-kinase, mitogen-activated protein kinase (Vincent and Feldman 2002; Di Toro et al. 2005) and members of the Janus kinase (JAK)/STAT3 signalling pathway (Zong et al. 2000; Yadav et al. 2005). REST plays a complex role in neuronal cells by differentially repressing target gene expression (Lunyak et al. 2004; Coulson 2005; Ballas and Mandel 2005). REST expression decreases during neurogenesis, but has been detected in the adult rat brain (Palm et al. 1998) and is up-regulated in response to global ischemia (Calderone et al. 2003) and induction of epilepsy (Spencer et al. 2006). Thus, the REST concentration seems to influence its function and the expression of neuronal genes, and may have different effects in embryonic and differentiated neurons (Su et al. 2004; Sun et al. 2005). In a previous study, REST was elevated during the early stages of neural induction by IGF-I in neuroblastoma cells. REST may contribute to the down-regulation of genes not yet required by the differentiation program, but its expression decreases after five days of treatment to allow for the acquisition of neural phenotypes. Di Toro et al. proposed a model in which the extent of neurite outgrowth in differentiating neuroblastoma cells was affected by the disappearance of REST (Di Toro et al. 2005). The human mu-opioid receptor gene (OPRM1) promoter contains a DNA sequence binding the repressor element 1 silencing transcription factor (REST) that is implicated in transcriptional repression. Therefore, in the fist part of this thesis, I investigated whether insulin-like growth factor I (IGF-I), which affects various aspects of neuronal induction and maturation, regulates OPRM1 transcription in neuronal cells in the context of the potential influence of REST. A series of OPRM1-luciferase promoter/reporter constructs were transfected into two neuronal cell models, neuroblastoma-derived SH-SY5Y cells and PC12 cells. In the former, endogenous levels of human mu-opioid receptor (hMOPr) mRNA were evaluated by real-time PCR. IGF-I upregulated OPRM1 transcription in: PC12 cells lacking REST, in SH-SY5Y cells transfected with constructs deficient in the REST DNA binding element, or when REST was down-regulated in retinoic acid-differentiated cells. IGF-I activates the signal transducer and activator of transcription-3 (STAT3) signaling pathway and this transcription factor, binding to the STAT1/3 DNA element located in the promoter, increases OPRM1 transcription. T-cell receptor (TCR) recognizes peptide antigens displayed in the context of the major histocompatibility complex (MHC) and gives rise to a potent as well as branched intracellular signalling that convert naïve T-cells in mature effectors, thus significantly contributing to the genesis of a specific immune response. In the second part of my work I exposed wild type Jurkat CD4+ T-cells to a mixture of CD3 and CD28 antigens in order to fully activate TCR and study whether its signalling influence OPRM1 expression. Results were that TCR engagement determined a significant induction of OPRM1 expression through the activation of transcription factors AP-1, NF-kB and NFAT. Eventually, I investigated MOPr turnover once it has been expressed on T-cells outer membrane. It turned out that DAMGO induced MOPr internalisation and recycling, whereas morphine did not. Overall, from the data collected in this thesis we can conclude that that a reduction in REST is a critical switch enabling IGF-I to up-regulate human MOPr, helping these findings clarify how human MOPr expression is regulated in neuronal cells, and that TCR engagement up-regulates OPRM1 transcription in T-cells. My results that neurotrophic factors a and TCR engagement, as well as it is reported for cytokines, seem to up-regulate OPRM1 in both neurons and immune cells suggest an important role for MOPr as a molecular bridge between neurons and immune cells; therefore, MOPr could play a key role in the cross-talk between immune system and nervous system and in particular in the balance between pro-inflammatory and pro-nociceptive stimuli and analgesic and neuroprotective effects.
Resumo:
The ever-increasing spread of automation in industry puts the electrical engineer in a central role as a promoter of technological development in a sector such as the use of electricity, which is the basis of all the machinery and productive processes. Moreover the spread of drives for motor control and static converters with structures ever more complex, places the electrical engineer to face new challenges whose solution has as critical elements in the implementation of digital control techniques with the requirements of inexpensiveness and efficiency of the final product. The successfully application of solutions using non-conventional static converters awake an increasing interest in science and industry due to the promising opportunities. However, in the same time, new problems emerge whose solution is still under study and debate in the scientific community During the Ph.D. course several themes have been developed that, while obtaining the recent and growing interest of scientific community, have much space for the development of research activity and for industrial applications. The first area of research is related to the control of three phase induction motors with high dynamic performance and the sensorless control in the high speed range. The management of the operation of induction machine without position or speed sensors awakes interest in the industrial world due to the increased reliability and robustness of this solution combined with a lower cost of production and purchase of this technology compared to the others available in the market. During this dissertation control techniques will be proposed which are able to exploit the total dc link voltage and at the same time capable to exploit the maximum torque capability in whole speed range with good dynamic performance. The proposed solution preserves the simplicity of tuning of the regulators. Furthermore, in order to validate the effectiveness of presented solution, it is assessed in terms of performance and complexity and compared to two other algorithm presented in literature. The feasibility of the proposed algorithm is also tested on induction motor drive fed by a matrix converter. Another important research area is connected to the development of technology for vehicular applications. In this field the dynamic performances and the low power consumption is one of most important goals for an effective algorithm. Towards this direction, a control scheme for induction motor that integrates within a coherent solution some of the features that are commonly required to an electric vehicle drive is presented. The main features of the proposed control scheme are the capability to exploit the maximum torque in the whole speed range, a weak dependence on the motor parameters, a good robustness against the variations of the dc-link voltage and, whenever possible, the maximum efficiency. The second part of this dissertation is dedicated to the multi-phase systems. This technology, in fact, is characterized by a number of issues worthy of investigation that make it competitive with other technologies already on the market. Multiphase systems, allow to redistribute power at a higher number of phases, thus making possible the construction of electronic converters which otherwise would be very difficult to achieve due to the limits of present power electronics. Multiphase drives have an intrinsic reliability given by the possibility that a fault of a phase, caused by the possible failure of a component of the converter, can be solved without inefficiency of the machine or application of a pulsating torque. The control of the magnetic field spatial harmonics in the air-gap with order higher than one allows to reduce torque noise and to obtain high torque density motor and multi-motor applications. In one of the next chapters a control scheme able to increase the motor torque by adding a third harmonic component to the air-gap magnetic field will be presented. Above the base speed the control system reduces the motor flux in such a way to ensure the maximum torque capability. The presented analysis considers the drive constrains and shows how these limits modify the motor performance. The multi-motor applications are described by a well-defined number of multiphase machines, having series connected stator windings, with an opportune permutation of the phases these machines can be independently controlled with a single multi-phase inverter. In this dissertation this solution will be presented and an electric drive consisting of two five-phase PM tubular actuators fed by a single five-phase inverter will be presented. Finally the modulation strategies for a multi-phase inverter will be illustrated. The problem of the space vector modulation of multiphase inverters with an odd number of phases is solved in different way. An algorithmic approach and a look-up table solution will be proposed. The inverter output voltage capability will be investigated, showing that the proposed modulation strategy is able to fully exploit the dc input voltage either in sinusoidal or non-sinusoidal operating conditions. All this aspects are considered in the next chapters. In particular, Chapter 1 summarizes the mathematical model of induction motor. The Chapter 2 is a brief state of art on three-phase inverter. Chapter 3 proposes a stator flux vector control for a three- phase induction machine and compares this solution with two other algorithms presented in literature. Furthermore, in the same chapter, a complete electric drive based on matrix converter is presented. In Chapter 4 a control strategy suitable for electric vehicles is illustrated. Chapter 5 describes the mathematical model of multi-phase induction machines whereas chapter 6 analyzes the multi-phase inverter and its modulation strategies. Chapter 7 discusses the minimization of the power losses in IGBT multi-phase inverters with carrier-based pulse width modulation. In Chapter 8 an extended stator flux vector control for a seven-phase induction motor is presented. Chapter 9 concerns the high torque density applications and in Chapter 10 different fault tolerant control strategies are analyzed. Finally, the last chapter presents a positioning multi-motor drive consisting of two PM tubular five-phase actuators fed by a single five-phase inverter.
Resumo:
The use of agents targeting EGFR represents a new frontier in colon cancer therapy. Among these, monoclonal antibodies (mAbs) and EGFR tyrosine kinase inhibitors (TKIs) seemed to be the most promising. However they have demonstrated low utility in therapy, the former being effective at toxic doses, the latter resulting inefficient in colon cancer. This thesis work presents studies on a new EGFR inhibitor, FR18, a molecule containing the same naphtoquinone core as shikonin, an agent with great anti-tumor potential. In HT-29, a human colon carcinoma cell line, flow cytometry, immunoprecipitation, and Western blot analysis, confocal spectral microscopy have demonstrated that FR18 is active at concentrations as low as 10 nM, inhibits EGF binding to EGFR while leaving unperturbed the receptor kinase activity. At concentration ranging from 30 nM to 5 μM, it activates apoptosis. FR18 seems therefore to have possible therapeutic applications in colon cancer. In addition, surface plasmon resonance (SPR) investigation of the direct EGF/EGFR complex interaction using different experimental approaches is presented. A commercially available purified EGFR was immobilised by amine coupling chemistry on SPR sensor chip and its interaction to EGF resulted to have a KD = 368 ± 0.65 nM. SPR technology allows the study of biomolecular interactions in real-time and label-free with a high degree of sensitivity and specificity and thus represents an important tool for drug discovery studies. On the other hand EGF/EGFR complex interaction represents a challenging but important system that can lead to significant general knowledge about receptor-ligand interactions, and the design of new drugs intended to interfere with EGFR binding activity.
Resumo:
Sigma (σ) receptors are well established as a non-opioid, non-phencyclidine, and haloperidol-sensitive receptor family with its own binding profile and a characteristic distribution in the central nervous system (CNS) as well as in endocrine, immune, and some peripheral tissues. Two σ receptors subtypes, termed σ1 and σ2, have been pharmacologically characterized, but, to date, only the σ1 has also been cloned. Activation of σ1 receptors alter several neurotransmitter systems and dopamine (DA) neurotrasmission has been often shown to constitute an important target of σ receptors in different experimental models; however the exact role of σ1 receptor in dopaminergic neurotransmission remains unclear. The DA transporter (DAT) modulates the spatial and temporal aspects of dopaminergic synaptic transmission and interprer the primary mechanism by wich dopaminergic neurons terminate the signal transmission. For this reason present studies have been focused in understanding whether, in cell models, the human subtype of σ1 (hσ1) receptor is able to directly modulate the human DA transporter (hDAT). In the first part of this thesis, HEK-293 and SH-SY5Y cells were permanently transfected with the hσ1 receptor. Subsequently, they were transfected with another plasmid for transiently expressing the hDAT. The hDAT activity was estimated using the described [3H]DA uptake assay and the effects of σ ligands were evaluated by measuring the uptaken [3H]DA after treating the cells with known σ agonists and antagonists. Results illustrated in this thesis demonstrate that activation of overexpressed hσ1 receptors by (+)-pentazocine, the σ1 agonist prototype, determines an increase of 40% of the extracellular [3H]DA uptake, in comparison to non-treated controls and the σ1 antagonists BD-1047 and NE-100 prevent the positive effect of (+)-pentazocine on DA reuptake DA is likely to be considered a neurotoxic molecule. In fact, when levels of intracellular DA abnormally invrease, vescicles can’t sequester the DA which is metabolized by MAO (A and B) and COMT with consequent overproduction of oxygen reactive species and toxic catabolites. Stress induced by these molecules leads cells to death. Thus, for the second part of this thesis, experiments have been performed in order to investigate functional alterations caused by the (+)-pentazocine-mediated increase of DA uptake; particularly it has been investigated if the increase of intracellular [DA] could affect cells viability. Results obtained from this study demonstrate that (+)-pentazocine alone increases DA cell toxicity in a concentration-dependent manner only in cells co-expressing hσ1 and hDAT and σ1 antagonists are able to revert the (+)-pentazocine-induced increase of cell susceptibility to DA toxicity. In the last part of this thesis, the functional cross-talking between hσ1 receptor and hDAT has been further investigated using confocal microscopy. From the acquired data it could be suggested that, following exposure to (+)-pentazocine, the hσ1 receptors massively translocate towards the plasma membrane and colocalize with the hDATs. However, any physical interaction between the two proteins remains to be proved. In conclusion, the presented study shows for the first time that, in cell models, hσ1 receptors directly modulate the hDAT activity. Facilitation of DA uptake induced by (+)-pentazocine is reflected on the increased cell susceptibility to DA toxicity; these effects are prevented by σ1 selective antagonists. Since numerous compounds, including several drugs of abuse, bind to σ1 receptors and activating them could facilitate the damage of dopaminergic neurons, the reported protective effect showed by σ1 antagonists would represent the pharmacological basis to test these compounds in experimental models of dopaminergic neurodegenerative diseases (i.e. Parkinson’s Disease).
Resumo:
Drug addiction manifests clinically as compulsive drug seeking, and cravings that can persist and recur even after extended periods of abstinence. The fundamental principle that unites addictive drugs is that each one enhances synaptic DA by means that dissociate it from normal behavioral control, so that they act to reinforce their own acquisition. Our attention has focused on the study of phenomena associated with the consumption of alcohol and heroin. Alcohol has long been considered an unspecific pharmacological agent, recent molecular pharmacology studies have shown that acts on different primary targets. Through gene expression studies conducted recently it has been shown that the classical opioid receptors are differently involved in the consumption of ethanol and, furthermore, the system nociceptin / NOP, included in the family of endogenous opioid system, and both appear able to play a key role in the initiation of alcohol use in rodents. What emerges is that manipulation of the opioid system, nociceptin, may be useful in the treatment of addictions and there are several evidences that support the use of this strategy. The linkage between gene expression alterations and epigenetic modulation in PDYN and PNOC promoters following alcohol treatment confirm the possible chromatin remodeling mechanism already proposed for alcoholism. In the second part of present study, we also investigated alterations in signaling molecules directly associated with MAPK pathway in a unique collection of postmortem brains from heroin abusers. The interest was focused on understanding the effects that prolonged exposure of heroin can cause in an individual, over the entire MAPK cascade and consequently on the transcription factor ELK1, which is regulated by this pathway. We have shown that the activation of ERK1/2 resulting in Elk-1 phosphorylation in striatal neurons supporting the hypothesis that prolonged exposure to substance abuse causes a dysregulation of MAPK pathway.
Resumo:
The vaginal microbiota of healthy women consists of a wide variety of anaerobic and aerobic bacteria, dominated by the genus Lactobacillus. The activity of lactobacilli is essential to protect women from genital infections and to maintain the natural healthy balance of the vaginal ecosystem. This role is particularly important during pregnancy because vaginal infection is one of the most important mechanisms for preterm birth. The most common vaginal disorder is bacterial vaginosis (BV). BV is a polymicrobial disorder, characterized by a depletion of lactobacilli and an increase in the concentration of other bacteria, including Gardnerella vaginalis, anaerobic Gram-negative rods, anaerobic Gram-positive cocci, Mycoplasma hominis, and Mobiluncus spp. An integrated molecular approach based on real-time PCR and PCR-DGGE was used to investigate the effects of two different therapeutic approaches on the vaginal microbiota composition. (i) The impact of a dietary supplementation with the probiotic VSL#3, a mixture of Lactobacillus, Bifidobacterium and Streptococcus strains, on the vaginal microbial ecology and immunological profiles of healthy women during late pregnancy was investigated. The intake was associated to a slight modulation of the vaginal microbiota and cytokine secretion, with potential implications in preventing preterm birth. (ii) The efficacy of different doses of the antibiotic rifaximin (100 mg/day for 5 days, 25 mg/day for 5 days, 100 mg/day for 2 days) on the vaginal microbiota of patients with BV enrolled in a multicentre, double-blind, randomised, placebo-controlled study was also evaluated. The molecular analyses demonstrated the ability of rifaximin 25 mg/day for 5 days to induce an increase of lactobacilli and a decrease of the BV-associated bacteria after antibiotic treatment, and a reduction of the complexity of the vaginal microbial communities. Thus, confirming clinical results, it represents the most effective treatment to be used in future pivotal studies for the treatment of BV.
Resumo:
Hypoxia-inducible factor-1 alpha (HIF-1α) plays a critical role in survival and is associated with poor prognosis in solid tumors. The role of HIF-1α in multiple myeloma is not completely known. In the present study, we explored the effect of EZN2968, an locked nucleic acid antisense oligonucleotide against HIF-1α, as a molecular target in MM. A panel of MM cell lines and primary samples from MM patients were cultured in vitro in the presence of EZN2968 . Under normoxia culture condition, HIF-1α mRNA and protein expression was detectable in all MM cell lines and in CD138+ cells from newly diagnosed MM patients samples. Significant up-regulation of HIF-1α protein expression was observed after incubation with IL6 or IGF-I, confirming that HIF-1α can be further induced by biological stimuli. EZN2968 efficiently induces a selective and stable down-modulation of HIF-1α and decreased the secretion of VEGF released by MM cell. Treatment with EZN2968 gave rise to a progressive accumulation of cells in the S and subG0 phase. The analysis of p21, a cyclin-dependent kinase inhibitors controlling cell cycle check point, shows upregulation of protein levels. These results suggest that HIF-1α inhibition is sufficient for cell cycle arrest in normoxia, and for inducing an apoptotic pathways.. In the presence of bone marrow microenvironment, HIF-1α inhibition blocks MAPK kinase pathway and secretion of pro-surviaval cytokines ( IL6,VEGF,IL8) In this study we provide evidence that HIF-1α, even in the absence of hypoxia signal, is expressed in MM plasma cells and further inducible by bone marrow milieu stimuli; moreover its inhibition is sufficient to induce a permanent cell cycle arrest. Our data support the hypothesis that HIF-1α inhibition may suppress tumor growth by preventing proliferation of plasma cells through p21 activation and blocking pro-survival stimuli from bone marrow microenvironment.
Resumo:
Ischemic preconditioning is a complex cardioprotective phenomenon that involves adaptive changes in cells and molecules. This adaptation occurs in a biphasic pattern: an early phase which develops after 1-2 h, and a late phase that develops after 12-24 h. While it is widely accepted that reactive oxygen species (ROS) are strongly involved in triggering ischemic preconditiong, it is not clear if they play a major role in the early or late phase of preconditioning and which are the mechanisms involved. Methylglyoxal, a metabolic compound formed mainly from the glycolytic intermediate glyceraldehyde-3-phosphate., is a precursor of advanced glycation end product (AGEs) .It is more reactive than glucose and shows a stronger ability to cross-link with protein amino groups to form AGEs. Methylglyoxal induced cytotoxicity may be at least partially responsible for cardiovascular and Alzheimer diseases. Methylglyoxal omeostasis is controlled by the glyoxalase system that consists of two enzyme, glyoxalase 1 (GLO1) and glyoxalase 2. In a recent study it was demonstrated that the transcriptional levels of GLO1 are controlled by NF-E2-related factor 2 (Nrf2). The isothiocyanate sulforaphane, derived from the hydrolysis of glucoraphanin abundantly present in broccoli, represents one of the most potent inducers of phase II enzymes through the Keap1–Nrf2 pathway. The aim of this thesis was evaluated molecular mechanisms in cardio- and neuroprotection and the possibility of modulation by nutraceutical phytocomponents This thesis show to one side that the protection induced by H2O2 is mediated by detoxifying and antioxidant phase II enzymes induction, regulated, not only by transcriptional factor Nrf2, but also by Nrf1; on the other side our data represent an innovative result because for the first time it was demonstrated the possibility of inducing GLO1 by SF supplementation.
Resumo:
Magnesium is an essential element for many biological processes crucial for cell life and proliferation. Growing evidences point out a role for this cation in the apoptotic process and in developing multi drug resistance (MDR) phenotype. The first part of this study aimed to highlight the involvement of the mitochondrial magnesium channel MRS2 in modulating drug-induced apoptosis. We generated an appropriate transgenic cellular system to regulate expression of MRS2 protein. The cells were then exposed to two different apoptotic agents commonly used in chemotherapy. The obtained results showed that cells overexpressing MRS2 channel are less responsiveness to pharmacological insults, looking more resistant to the induced apoptosis. Moreover, in normal condition, MRS2 overexpression induces higher magnesium uptake into isolated mitochondria respect to control cells correlating with an increment of total intracellular magnesium concentration. In the second part of this research we investigated whether magnesium intracellular content and compartmentalization could be used as a signature to discriminate MDR tumour cells from their sensitive counterparts. As MDR model we choose colon carcinoma cell line sensitive and resistant to doxorubicin. We exploited a standard-less approach providing a complete characterization of whole single-cells by combining X-Ray Fluorescence Microscopy , Atomic Force Microscopy and Scanning Transmission X-ray Microscopy. This method allows the quantification of the intracellular spatial distribution and total concentration of magnesium in whole dehydrated cells. The measurements, carried out in 27 single cells, revealed a different magnesium pattern for both concentration and distribution of the element in the two cellular strains. These results were then confirmed by quantifying the total amount of intracellular magnesium in a large populations of cells by using DCHQ5 probe and traditional fluorimetric technique.