9 resultados para Niiranen, Susanna
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
To continuously improve the performance of metal-oxide-semiconductor field-effect-transistors (MOSFETs), innovative device architectures, gate stack engineering and mobility enhancement techniques are under investigation. In this framework, new physics-based models for Technology Computer-Aided-Design (TCAD) simulation tools are needed to accurately predict the performance of upcoming nanoscale devices and to provide guidelines for their optimization. In this thesis, advanced physically-based mobility models for ultrathin body (UTB) devices with either planar or vertical architectures such as single-gate silicon-on-insulator (SOI) field-effect transistors (FETs), double-gate FETs, FinFETs and silicon nanowire FETs, integrating strain technology and high-κ gate stacks are presented. The effective mobility of the two-dimensional electron/hole gas in a UTB FETs channel is calculated taking into account its tensorial nature and the quantization effects. All the scattering events relevant for thin silicon films and for high-κ dielectrics and metal gates have been addressed and modeled for UTB FETs on differently oriented substrates. The effects of mechanical stress on (100) and (110) silicon band structures have been modeled for a generic stress configuration. Performance will also derive from heterogeneity, coming from the increasing diversity of functions integrated on complementary metal-oxide-semiconductor (CMOS) platforms. For example, new architectural concepts are of interest not only to extend the FET scaling process, but also to develop innovative sensor applications. Benefiting from properties like large surface-to-volume ratio and extreme sensitivity to surface modifications, silicon-nanowire-based sensors are gaining special attention in research. In this thesis, a comprehensive analysis of the physical effects playing a role in the detection of gas molecules is carried out by TCAD simulations combined with interface characterization techniques. The complex interaction of charge transport in silicon nanowires of different dimensions with interface trap states and remote charges is addressed to correctly reproduce experimental results of recently fabricated gas nanosensors.
Resumo:
Obiettivo: descrivere le caratteristiche ecografiche e flussimetriche dei sarcoma uterini Materiali e Metodi: Dall'archivio anatomopatologico di due cliniche Universitarie sono state reclutate retrospettivamente tutte le pazienti con diagnosi anatomopatologica di sarcoma uterino. Tutte le cartelle cliniche, le immagini e i filmati digitalizzati sono stati analizzati e dati raccolti in un database. Risultati: Sono stati inclusi nello studio 49 casi, che comprendono 17 leiomiosarcoma, 14 sarcoma dello stroma endometriale e 18 carcinosarcoma. L'età media alla diagnosi è stata 62 anni (range 35-87). L'ottanta per cento delle pazienti erano in menopausa al momento della diagnosi. Circa la metà delle pazienti presentavano sanguinamento anomalo e il 20% dolore pelvico. La maggior parte delle lesioni sono apparse iso-ipoecogene, senza coni d’ombra (47/49;96%). Conclusioni: I sarcomi uterini sono un gruppo eterogeneo di tumori che presentano aspetti ecografici diversi anche in relazione all’istotipo. Conoscere le diverse caratteristiche può essere utile ai fini di una corretta diagnosi. Nel nostro studio l’assenza dei coni d’ombra risulta essere l’aspetto più significativo.
Resumo:
Dopo aver analizzato il conflitto, le sue funzioni e le modalità di gestione, l'autore si sofferma dapprima sulle varie tipologie di mediazione per poi focalizzare l'attenzione sulla mediazione civile e commerciale evidenziando i dati disponibili dall'entrata in vigore del tentativo obbligatorio come condizione di procedibilità della domanda giudiziale per le materie civili, alla fine del 2013.
Resumo:
Le travail offre une vision d’ensemble des représentations du Moyen Âge tardif (XIVe-XVIe siècles), consacrées à des héroïnes féminines, en vue d’une étude de synthèse encore manquante sur le sujet. Le domaine culturel examiné est français, mais le panorama est élargi aux représentations provençales et toscanes quand on a de traces de représentation en France, même si le texte original est perdu. Les protagonistes des drames conservés sont des héroïnes de la foi : l’étude se focalise en particulier sur les drames qui mettent en scène des martyres. En outre, sont analysés d’un côté deux dialogues dramatiques latins de Hrotsvita (Xe siècle), qui constituent l’exemple le plus ancien d’un drame médiéval consacré à une sainte martyre, dans une perspective comparatiste qui prend aussi en compte la diachronie ; de l’autre côté, sont proposés des excursus sur le culte et l’iconographie ainsi qu’une comparaison avec les légendes hagiographiques. Le commentaire des textes du corpus révèle non seulement leurs qualités poétiques et leurs potentialités performatives, mais il présente aussi les constantes dramaturgiques qui les relient ainsi que les singularités qui les distinguent. Enfin, la comparaison avec deux exemples de drames européens de la même époque qui mettent en scène respectivement une héroïne historique et une figure légendaire, placées dans un horizon mondain et non saint, vient enrichir la lecture de l’héroïne martyre. La thèse se donne pour perspective de montrer que les problèmes posés par les textes (la stigmatisation du sujet féminin libre, la répression de la résistance au pouvoir, la contradiction entre un corps vulnérable et une parole puissante) sont d’un intérêt considérable non seulement pour le lecteur expert, mais aussi pour un spectateur et un metteur en scène potentiels, de sorte que se trouve justifiée la redécouverte de ces représentations médiévales par et sur les scènes d’aujourd’hui.
Resumo:
Silicon-based discrete high-power devices need to be designed with optimal performance up to several thousand volts and amperes to reach power ratings ranging from few kWs to beyond the 1 GW mark. To this purpose, a key element is the improvement of the junction termination (JT) since it allows to drastically reduce surface electric field peaks which may lead to an earlier device failure. This thesis will be mostly focused on the negative bevel termination which from several years constitutes a standard processing step in bipolar production lines. A simple methodology to realize its counterpart, a planar JT with variation of the lateral doping concentration (VLD) will be also described. On the JT a thin layer of a semi insulating material is usually deposited, which acts as passivation layer reducing the interface defects and contributing to increase the device reliability. A thorough understanding of how the passivation layer properties affect the breakdown voltage and the leakage current of a fast-recovery diode is fundamental to preserve the ideal termination effect and provide a stable blocking capability. More recently, amorphous carbon, also called diamond-like carbon (DLC), has been used as a robust surface passivation material. By using a commercial TCAD tool, a detailed physical explanation of DLC electrostatic and transport properties has been provided. The proposed approach is able to predict the breakdown voltage and the leakage current of a negative beveled power diode passivated with DLC as confirmed by the successfully validation against the available experiments. In addition, the VLD JT proposed to overcome the limitation of the negative bevel architecture has been simulated showing a breakdown voltage very close to the ideal one with a much smaller area consumption. Finally, the effect of a low junction depth on the formation of current filaments has been analyzed by performing reverse-recovery simulations.
Resumo:
Understanding the natural and forced variability of the atmospheric general circulation and its drivers is one of the grand challenges in climate science. It is of paramount importance to understand to what extent the systematic error of climate models affects the processes driving such variability. This is done by performing a set of simulations (ROCK experiments) with an intermediate complexity atmospheric model (SPEEDY), in which the Rocky Mountains orography is increased or decreased to influence the structure of the North Pacific jet stream. For each of these modified-orography experiments, the climatic response to idealized sea surface temperature anomalies of varying intensity in the El Niño Southern Oscillation (ENSO) region is studied. ROCK experiments are characterized by variations in the Pacific jet stream intensity whose extension encompasses the spread of the systematic error found in Coupled Model Intercomparison Project (CMIP6) models. When forced with ENSO-like idealised anomalies, they exhibit a non-negligible sensitivity in the response pattern over the Pacific North American region, indicating that the model mean state can affect the model response to ENSO. It is found that the classical Rossby wave train response to ENSO is more meridionally oriented when the Pacific jet stream is weaker and more zonally oriented with a stronger jet. Rossby wave linear theory suggests that a stronger jet implies a stronger waveguide, which traps Rossby waves at a lower latitude, favouring a zonal propagation of Rossby waves. The shape of the dynamical response to ENSO affects the ENSO impacts on surface temperature and precipitation over Central and North America. A comparison of the SPEEDY results with CMIP6 models suggests a wider applicability of the results to more resources-demanding climate general circulation models (GCMs), opening up to future works focusing on the relationship between Pacific jet misrepresentation and response to external forcing in fully-fledged GCMs.
Resumo:
In this thesis, a TCAD approach for the investigation of charge transport in amorphous silicon dioxide is presented for the first time. The proposed approach is used to investigate high-voltage silicon oxide thick TEOS capacitors embedded in the back-end inter-level dielectric layers for galvanic insulation applications. In the first part of this thesis, a detailed review of the main physical and chemical properties of silicon dioxide and the main physical models for the description of charge transport in insulators are presented. In the second part, the characterization of high-voltage MIM structures at different high-field stress conditions up to the breakdown is presented. The main physical mechanisms responsible of the observed results are then discussed in details. The third part is dedicated to the implementation of a TCAD approach capable of describing charge transport in silicon dioxide layers in order to gain insight into the microscopic physical mechanisms responsible of the leakage current in MIM structures. In particular, I investigated and modeled the role of charge injection at contacts and charge build-up due to trapping and de-trapping mechanisms in the oxide layer to the purpose of understanding its behavior under DC and AC stress conditions. In addition, oxide breakdown due to impact-ionization of carriers has been taken into account in order to have a complete representation of the oxide behavior at very high fields. Numerical simulations have been compared against experiments to quantitatively validate the proposed approach. In the last part of the thesis, the proposed approach has been applied to simulate the breakdown in realistic structures under different stress conditions. The TCAD tool has been used to carry out a detailed analysis of the most relevant physical quantities, in order to gain a detailed understanding on the main mechanisms responsible for breakdown and guide design optimization.
Resumo:
Comparative studies on constitutional design for divided societies indicate that there is no magic formula to the challenges that these societies pose, as lots of factors influence constitutional design. In the literature on asymmetric federalism, the introduction of constitutional asymmetries is considered a flexible instrument of ethnic conflict resolution, as it provides a mixture of the two main theoretical approaches to constitutional design for divided societies (i.e., integration and accommodation). Indeed, constitutional asymmetries are a complex and multifaceted phenomenon, as their degree of intensity can vary across constitutional systems, and there are both legal and extra-legal factors that may explain such differences. This thesis argues that constitutional asymmetries provide a flexible model of constitutional design and aims to explore the legal factors that are most likely to explain the different degrees of constitutional asymmetry in divided multi-tiered systems. To this end, the research adopts a qualitative methodology, i.e., Qualitative Comparative Analysis (QCA), which allows an understanding of whether a condition or combination of conditions (i.e., the legal factors) determine the outcome (i.e., high, medium, low degree of constitutional asymmetry, or constitutional symmetry). The QCA is conducted on 16 divided multi-tiered systems, and for each case, the degree of constitutional asymmetry was analyzed by employing standardized indexes on subnational autonomy, allowing for a more precise measure of constitutional asymmetry than has previously been provided in the literature. Overall, the research confirms the complex nature of constitutional asymmetries, as the degrees of asymmetries vary substantially not only across systems but also within cases among the dimensions of subnational autonomy. The outcome of the Qualitative Comparative Analysis also confirms a path of complex causality since the different degrees of constitutional asymmetry always depend on several legal factors, that combined produce a low, medium, or high degree of constitutional asymmetry or, conversely, constitutional symmetry.