2 resultados para Neural correlates
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
A successful interaction with objects in the environment requires integrating information concerning object-location with the shape, dimension and position of body parts in space. The former information is coded in a multisensory representation of the space around the body, i.e. peripersonal space (PPS), whereas the latter is enabled by an online, constantly updated, action-orientated multisensory representation of the body (BR) that is critical for action. One of the critical features of these representations is that both PPS and BR are not fixed, but they dynamically change depending on different types of experience. In a series of experiment, I studied plastic properties of PPS and BR in humans. I have developed a series of methods to measure the boundaries of PPS representation (Chapter 4), to study its neural correlates (Chapter 3) and to assess BRs. These tasks have been used to study changes in PPS and BR following tool-use (Chapter 5), multisensory stimulation (Chapter 6), amputation and prosthesis implantation (Chapter 7) or social interaction (Chapter 8). I found that changes in the function (tool-use) and the structure (amputation and prosthesis implantation) of the physical body elongate or shrink both PPS and BR. Social context and social interaction also shape PPS representation. Such high degree of plasticity suggests that our sense of body in space is not given at once, but it is constantly constructed and adapted through experience.
Resumo:
That humans and animals learn from interaction with the environment is a foundational idea underlying nearly all theories of learning and intelligence. Learning that certain outcomes are associated with specific actions or stimuli (both internal and external), is at the very core of the capacity to adapt behaviour to environmental changes. In the present work, appetitive and aversive reinforcement learning paradigms have been used to investigate the fronto-striatal loops and behavioural correlates of adaptive and maladaptive reinforcement learning processes, aiming to a deeper understanding of how cortical and subcortical substrates interacts between them and with other brain systems to support learning. By combining a large variety of neuroscientific approaches, including behavioral and psychophysiological methods, EEG and neuroimaging techniques, these studies aim at clarifying and advancing the knowledge of the neural bases and computational mechanisms of reinforcement learning, both in normal and neurologically impaired population.