8 resultados para Network of on-line learning
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
I temi della ricerca riguardano il rapporto fra avvento del web e la modificazione dei processi di formazione di identità personale e sociale, della percezione dello spazio e del tempo, del prosumerismo digitale e delle varie forme di partecipazione ed associazione. Centrale è stata l’analisi del rapporto fra il Web 2.0 e la trasformazione delle forme di comunicazione a vari livelli, sia personali che sociali. Partendo da una analisi dei contesti socio-economici globali che hanno trasformato la società moderna nella società informazionale, è stato impostato un percorso di ricerca che approfondisse gli attuali criteri di strutturazione della propria identità, alla luce dell’avvento dei social network e delle reti virtuali di comunicazione come strumento preferenziale di socializzazione. La realtà delle reti sociali è stata analizzata in un’ottica di aggregazione spontanea mirata tanto alla comunicazione quanto alla tutela dei consumatori, e le trasformazioni portate dal Web 2.0 sono state la chiave di lettura per ridefinire i parametri della partecipazione dal basso generata dalla rete. Per comprendere la portata di tali trasformazioni nel contesto italiano è stato impostato un paragone tra l’uso del web negli Stati Uniti e in Italia, avendo le recente campagne elettorali dimostrato l’importanza del web nella partecipazione politica bottom-up; il percorso di ricerca ha dunque affrontato una comparazione di due casi, quello italiano e quello statunitense, finalizzato a comprendere l’attuale ruolo dell’utente nelle dinamiche di comunicazione mediatica. Per focalizzare al meglio le trasformazioni sociali generate dalla partecipazione on line è stato infine analizzato il caso del citizen journalism, per misurare, attraverso la metodologia dell’etnografia digitale, l’entità delle trasformazioni in corso. Il portale di giornalismo partecipativo YouReporter è stato il contesto privilegiato dove poter verificare le ipotesi iniziali circa le dinamiche di partecipazione, e il supporto di programmi di elaborazione statistica netnografica ha permesso di destrutturare al meglio tali dinamiche.
Resumo:
In recent decades, two prominent trends have influenced the data modeling field, namely network analysis and machine learning. This thesis explores the practical applications of these techniques within the domain of drug research, unveiling their multifaceted potential for advancing our comprehension of complex biological systems. The research undertaken during this PhD program is situated at the intersection of network theory, computational methods, and drug research. Across six projects presented herein, there is a gradual increase in model complexity. These projects traverse a diverse range of topics, with a specific emphasis on drug repurposing and safety in the context of neurological diseases. The aim of these projects is to leverage existing biomedical knowledge to develop innovative approaches that bolster drug research. The investigations have produced practical solutions, not only providing insights into the intricacies of biological systems, but also allowing the creation of valuable tools for their analysis. In short, the achievements are: • A novel computational algorithm to identify adverse events specific to fixed-dose drug combinations. • A web application that tracks the clinical drug research response to SARS-CoV-2. • A Python package for differential gene expression analysis and the identification of key regulatory "switch genes". • The identification of pivotal events causing drug-induced impulse control disorders linked to specific medications. • An automated pipeline for discovering potential drug repurposing opportunities. • The creation of a comprehensive knowledge graph and development of a graph machine learning model for predictions. Collectively, these projects illustrate diverse applications of data science and network-based methodologies, highlighting the profound impact they can have in supporting drug research activities.
Resumo:
Images of a scene, static or dynamic, are generally acquired at different epochs from different viewpoints. They potentially gather information about the whole scene and its relative motion with respect to the acquisition device. Data from different (in the spatial or temporal domain) visual sources can be fused together to provide a unique consistent representation of the whole scene, even recovering the third dimension, permitting a more complete understanding of the scene content. Moreover, the pose of the acquisition device can be achieved by estimating the relative motion parameters linking different views, thus providing localization information for automatic guidance purposes. Image registration is based on the use of pattern recognition techniques to match among corresponding parts of different views of the acquired scene. Depending on hypotheses or prior information about the sensor model, the motion model and/or the scene model, this information can be used to estimate global or local geometrical mapping functions between different images or different parts of them. These mapping functions contain relative motion parameters between the scene and the sensor(s) and can be used to integrate accordingly informations coming from the different sources to build a wider or even augmented representation of the scene. Accordingly, for their scene reconstruction and pose estimation capabilities, nowadays image registration techniques from multiple views are increasingly stirring up the interest of the scientific and industrial community. Depending on the applicative domain, accuracy, robustness, and computational payload of the algorithms represent important issues to be addressed and generally a trade-off among them has to be reached. Moreover, on-line performance is desirable in order to guarantee the direct interaction of the vision device with human actors or control systems. This thesis follows a general research approach to cope with these issues, almost independently from the scene content, under the constraint of rigid motions. This approach has been motivated by the portability to very different domains as a very desirable property to achieve. A general image registration approach suitable for on-line applications has been devised and assessed through two challenging case studies in different applicative domains. The first case study regards scene reconstruction through on-line mosaicing of optical microscopy cell images acquired with non automated equipment, while moving manually the microscope holder. By registering the images the field of view of the microscope can be widened, preserving the resolution while reconstructing the whole cell culture and permitting the microscopist to interactively explore the cell culture. In the second case study, the registration of terrestrial satellite images acquired by a camera integral with the satellite is utilized to estimate its three-dimensional orientation from visual data, for automatic guidance purposes. Critical aspects of these applications are emphasized and the choices adopted are motivated accordingly. Results are discussed in view of promising future developments.
Resumo:
Visual tracking is the problem of estimating some variables related to a target given a video sequence depicting the target. Visual tracking is key to the automation of many tasks, such as visual surveillance, robot or vehicle autonomous navigation, automatic video indexing in multimedia databases. Despite many years of research, long term tracking in real world scenarios for generic targets is still unaccomplished. The main contribution of this thesis is the definition of effective algorithms that can foster a general solution to visual tracking by letting the tracker adapt to mutating working conditions. In particular, we propose to adapt two crucial components of visual trackers: the transition model and the appearance model. The less general but widespread case of tracking from a static camera is also considered and a novel change detection algorithm robust to sudden illumination changes is proposed. Based on this, a principled adaptive framework to model the interaction between Bayesian change detection and recursive Bayesian trackers is introduced. Finally, the problem of automatic tracker initialization is considered. In particular, a novel solution for categorization of 3D data is presented. The novel category recognition algorithm is based on a novel 3D descriptors that is shown to achieve state of the art performances in several applications of surface matching.
Resumo:
La tesi ha ad oggetto lo studio e l’approfondimento delle forme di promozione commerciale presenti in Rete caratterizzate, più che da una normale evoluzione, da continue metamorfosi che ridefiniscono ogni giorno il concetto di pubblicità. L’intento è quello di analizzare il quadro giuridico applicabile alla pubblicità via Web, a fronte della varità di forme e di modalità che essa può assumere. Nel lavoro vengono passate in rassegna le caratteristiche che differenziano la pubblicità commerciale on-line rispetto a quella tradizionale; tra le quali, particolare rilievo assume la capacità d’istaurare una relazione – diretta e non mediata – tra impresa e consumatore. Nel prosieguo viene affrontato il problema dell’individuazione, stante il carattere a-territoriale della Rete, della legge applicabile al web advertising, per poi passare ad una ricognizione delle norme europee ed italiane in materia, senza trascurare quelle emanate in sede di autodisciplina. Ampio spazio è dedicato, infine, all’esame delle diverse e più recenti tecniche di promozione pubblicitaria, di cui sono messi in evidenza gli aspetti tecnico-informatici, imprescindibili ai fini di una corretta valutazione del tema giuridico. In particolare, vengono approfonditi il servizio di posizionamento a pagamento offerto dai principali motori di ricerca (keywords advertising) e gli strumenti di tracciamento dei “comportamenti” on-line degli utenti, che consentono la realizzazione di campagne pubblicitarie mirate (on-line behavioural advertising). Il Web, infatti, non offre più soltanto la possibilità di superare barriere spaziali, linguistiche o temporali e di ampliare la propria sfera di notorietà, ma anche di raggiungere l’utente “interessato” e, pertanto, potenziale acquirente. Di queste nuove realtà pubblicitarie vengono vagliati gli aspetti più critici ed esaminata la disciplina giuridica eventualmente applicabile anche alla luce delle principali decisioni giurisprudenziali nazionali ed europee in materia, nonché delle esperienze giuridiche nord-americane e di tipo autoregolamentare.
Resumo:
The question addressed by this dissertation is how the human brain builds a coherent representation of the body, and how this representation is used to recognize its own body. Recent approaches by neuroimaging and TMS revealed hints for a distinct brain representation of human body, as compared with other stimulus categories. Neuropsychological studies demonstrated that body-parts and self body-parts recognition are separate processes sub-served by two different, even if possibly overlapping, networks within the brain. Bodily self-recognition is one aspect of our ability to distinguish between self and others and the self/other distinction is a crucial aspect of social behaviour. This is the reason why I have conducted a series of experiment on subjects with everyday difficulties in social and emotional behaviour, such as patients with autism spectrum disorders (ASD) and patients with Parkinson’s disease (PD). More specifically, I studied the implicit self body/face recognition (Chapter 6) and the influence of emotional body postures on bodily self-processing in TD children as well as in ASD children (Chapter 7). I found that the bodily self-recognition is present in TD and in ASD children and that emotional body postures modulate self and others’ body processing. Subsequently, I compared implicit and explicit bodily self-recognition in a neuro-degenerative pathology, such as in PD patients, and I found a selective deficit in implicit but not in explicit self-recognition (Chapter 8). This finding suggests that implicit and explicit bodily self-recognition are separate processes subtended by different mechanisms that can be selectively impaired. If the bodily self is crucial for self/other distinction, the space around the body (personal space) represents the space of interaction and communication with others. When, I studied this space in autism, I found that personal space regulation is impaired in ASD children (Chapter 9).
Resumo:
The kinematics is a fundamental tool to infer the dynamical structure of galaxies and to understand their formation and evolution. Spectroscopic observations of gas emission lines are often used to derive rotation curves and velocity dispersions. It is however difficult to disentangle these two quantities in low spatial-resolution data because of beam smearing. In this thesis, we present 3D-Barolo, a new software to derive the gas kinematics of disk galaxies from emission-line data-cubes. The code builds tilted-ring models in the 3D observational space and compares them with the actual data-cubes. 3D-Barolo works with data at a wide range of spatial resolutions without being affected by instrumental biases. We use 3D-Barolo to derive rotation curves and velocity dispersions of several galaxies in both the local and the high-redshift Universe. We run our code on HI observations of nearby galaxies and we compare our results with 2D traditional approaches. We show that a 3D approach to the derivation of the gas kinematics has to be preferred to a 2D approach whenever a galaxy is resolved with less than about 20 elements across the disk. We moreover analyze a sample of galaxies at z~1, observed in the H-alpha line with the KMOS/VLT spectrograph. Our 3D modeling reveals that the kinematics of these high-z systems is comparable to that of local disk galaxies, with steeply-rising rotation curves followed by a flat part and H-alpha velocity dispersions of 15-40 km/s over the whole disks. This evidence suggests that disk galaxies were already fully settled about 7-8 billion years ago. In summary, 3D-Barolo is a powerful and robust tool to separate physical and instrumental effects and to derive a reliable kinematics. The analysis of large samples of galaxies at different redshifts with 3D-Barolo will provide new insights on how galaxies assemble and evolve throughout cosmic time.
Resumo:
BACKGROUND Neuroendocrine neoplasia (NEN) are divided in well differentiated G1,G2 and G3 neuroendocrine tumors (NETs) and G3 neuroendocrine carcinomas (NECs). For the latter no standard therapy in second-line is available and prognosis is poor. METHODS Primary aim was to evaluate new prognostic and predictive biomarkers (WP1-3). In WP4 we explored the activity of FOLFIRI and CAPTEM as second-line in NEC patients in a multicenter non-comparative phase II trial RESULTS In WP1-2 we found that 4 of 6 GEP-NEC patients with a negative 68Ga-PET/CT had a loss of expression of RB1. In WP3 on 47 GEP-NENs patients the presence of DLL3 in 76.9% of G3 NEC correlate with RB1-loss (p<0.001), negative 68Ga-PET/CT(p=0.001) and a poor prognosis. In the WP4 we conducted a multicenter non-comparative phase II trial to explore the activity of FOLFIRI or CAPTEM in terms of DCR, PFS and OS given as second-line in NEC patients. From 06/03/2017 to 18/01/2021 53 out of 112 patients were enrolled in 17 of 23 participating centers. Median follow-up was 10.8 (range 1.4 – 38.6) months. The 3-month DCR was 39.3% in the FOLFIRI and 32.0 % in the CAPTEM arm. The 6-months PFS rate was 34.6% ( 95%CI 17.5-52.5) in FOLFIRI and 9.6% (95%CI 1.8-25.7) in CAPTEM group. In the FOLFIRI subgroup the 6-months and 12-months OS rate were 55.4% (95%CI 32.6-73.3) and 30.3% (CI 11.1-52.2) respectively. In CAPTEM arm the 6-months and 12-months OS rate were 57.2% (95%34.9-74.3) and 29.0% (95%10.0-43.3). The miRNA analysis of 20 patients compared with 20 healthy subjects shows an overexpression of miRNAs involved in staminality , neo-angiogenesis and mitochontrial anaerobic glycolysis activation. CONCLUSION WP1-3 support the hypothesis that G3NECs carrying RB1 loss is associated with a DLL3 expression highlighting a potential therapeutic opportunity. Our study unfortunately didn’t met the primary end–point but the results are promising