4 resultados para Network cost allocation
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Wireless networks rapidly became a fundamental pillar of everyday activities. Whether at work or elsewhere, people often benefits from always-on connections. This trend is likely to increase, and hence actual technologies struggle to cope with the increase in traffic demand. To this end, Cognitive Wireless Networks have been studied. These networks aim at a better utilization of the spectrum, by understanding the environment in which they operate, and adapt accordingly. In particular recently national regulators opened up consultations on the opportunistic use of the TV bands, which became partially free due to the digital TV switch over. In this work, we focus on the indoor use of of TVWS. Interesting use cases like smart metering and WiFI like connectivity arise, and are studied and compared against state of the art technology. New measurements for TVWS networks will be presented and evaluated, and fundamental characteristics of the signal derived. Then, building on that, a new model of spectrum sharing, which takes into account also the height from the terrain, is presented and evaluated in a real scenario. The principal limits and performance of TVWS operated networks will be studied for two main use cases, namely Machine to Machine communication and for wireless sensor networks, particularly for the smart grid scenario. The outcome is that TVWS are certainly interesting to be studied and deployed, in particular when used as an additional offload for other wireless technologies. Seeing TVWS as the only wireless technology on a device is harder to be seen: the uncertainity in channel availability is the major drawback of opportunistic networks, since depending on the primary network channel allocation might lead in having no channels available for communication. TVWS can be effectively exploited as offloading solutions, and most of the contributions presented in this work proceed in this direction.
Resumo:
A prevalent claim is that we are in knowledge economy. When we talk about knowledge economy, we generally mean the concept of “Knowledge-based economy” indicating the use of knowledge and technologies to produce economic benefits. Hence knowledge is both tool and raw material (people’s skill) for producing some kind of product or service. In this kind of environment economic organization is undergoing several changes. For example authority relations are less important, legal and ownership-based definitions of the boundaries of the firm are becoming irrelevant and there are only few constraints on the set of coordination mechanisms. Hence what characterises a knowledge economy is the growing importance of human capital in productive processes (Foss, 2005) and the increasing knowledge intensity of jobs (Hodgson, 1999). Economic processes are also highly intertwined with social processes: they are likely to be informal and reciprocal rather than formal and negotiated. Another important point is also the problem of the division of labor: as economic activity becomes mainly intellectual and requires the integration of specific and idiosyncratic skills, the task of dividing the job and assigning it to the most appropriate individuals becomes arduous, a “supervisory problem” (Hogdson, 1999) emerges and traditional hierarchical control may result increasingly ineffective. Not only specificity of know how makes it awkward to monitor the execution of tasks, more importantly, top-down integration of skills may be difficult because ‘the nominal supervisors will not know the best way of doing the job – or even the precise purpose of the specialist job itself – and the worker will know better’ (Hogdson,1999). We, therefore, expect that the organization of the economic activity of specialists should be, at least partially, self-organized. The aim of this thesis is to bridge studies from computer science and in particular from Peer-to-Peer Networks (P2P) to organization theories. We think that the P2P paradigm well fits with organization problems related to all those situation in which a central authority is not possible. We believe that P2P Networks show a number of characteristics similar to firms working in a knowledge-based economy and hence that the methodology used for studying P2P Networks can be applied to organization studies. Three are the main characteristics we think P2P have in common with firms involved in knowledge economy: - Decentralization: in a pure P2P system every peer is an equal participant, there is no central authority governing the actions of the single peers; - Cost of ownership: P2P computing implies shared ownership reducing the cost of owing the systems and the content, and the cost of maintaining them; - Self-Organization: it refers to the process in a system leading to the emergence of global order within the system without the presence of another system dictating this order. These characteristics are present also in the kind of firm that we try to address and that’ why we have shifted the techniques we adopted for studies in computer science (Marcozzi et al., 2005; Hales et al., 2007 [39]) to management science.
Resumo:
In this thesis we study three combinatorial optimization problems belonging to the classes of Network Design and Vehicle Routing problems that are strongly linked in the context of the design and management of transportation networks: the Non-Bifurcated Capacitated Network Design Problem (NBP), the Period Vehicle Routing Problem (PVRP) and the Pickup and Delivery Problem with Time Windows (PDPTW). These problems are NP-hard and contain as special cases some well known difficult problems such as the Traveling Salesman Problem and the Steiner Tree Problem. Moreover, they model the core structure of many practical problems arising in logistics and telecommunications. The NBP is the problem of designing the optimum network to satisfy a given set of traffic demands. Given a set of nodes, a set of potential links and a set of point-to-point demands called commodities, the objective is to select the links to install and dimension their capacities so that all the demands can be routed between their respective endpoints, and the sum of link fixed costs and commodity routing costs is minimized. The problem is called non- bifurcated because the solution network must allow each demand to follow a single path, i.e., the flow of each demand cannot be splitted. Although this is the case in many real applications, the NBP has received significantly less attention in the literature than other capacitated network design problems that allow bifurcation. We describe an exact algorithm for the NBP that is based on solving by an integer programming solver a formulation of the problem strengthened by simple valid inequalities and four new heuristic algorithms. One of these heuristics is an adaptive memory metaheuristic, based on partial enumeration, that could be applied to a wider class of structured combinatorial optimization problems. In the PVRP a fleet of vehicles of identical capacity must be used to service a set of customers over a planning period of several days. Each customer specifies a service frequency, a set of allowable day-combinations and a quantity of product that the customer must receive every time he is visited. For example, a customer may require to be visited twice during a 5-day period imposing that these visits take place on Monday-Thursday or Monday-Friday or Tuesday-Friday. The problem consists in simultaneously assigning a day- combination to each customer and in designing the vehicle routes for each day so that each customer is visited the required number of times, the number of routes on each day does not exceed the number of vehicles available, and the total cost of the routes over the period is minimized. We also consider a tactical variant of this problem, called Tactical Planning Vehicle Routing Problem, where customers require to be visited on a specific day of the period but a penalty cost, called service cost, can be paid to postpone the visit to a later day than that required. At our knowledge all the algorithms proposed in the literature for the PVRP are heuristics. In this thesis we present for the first time an exact algorithm for the PVRP that is based on different relaxations of a set partitioning-like formulation. The effectiveness of the proposed algorithm is tested on a set of instances from the literature and on a new set of instances. Finally, the PDPTW is to service a set of transportation requests using a fleet of identical vehicles of limited capacity located at a central depot. Each request specifies a pickup location and a delivery location and requires that a given quantity of load is transported from the pickup location to the delivery location. Moreover, each location can be visited only within an associated time window. Each vehicle can perform at most one route and the problem is to satisfy all the requests using the available vehicles so that each request is serviced by a single vehicle, the load on each vehicle does not exceed the capacity, and all locations are visited according to their time window. We formulate the PDPTW as a set partitioning-like problem with additional cuts and we propose an exact algorithm based on different relaxations of the mathematical formulation and a branch-and-cut-and-price algorithm. The new algorithm is tested on two classes of problems from the literature and compared with a recent branch-and-cut-and-price algorithm from the literature.
Resumo:
Decomposition based approaches are recalled from primal and dual point of view. The possibility of building partially disaggregated reduced master problems is investigated. This extends the idea of aggregated-versus-disaggregated formulation to a gradual choice of alternative level of aggregation. Partial aggregation is applied to the linear multicommodity minimum cost flow problem. The possibility of having only partially aggregated bundles opens a wide range of alternatives with different trade-offs between the number of iterations and the required computation for solving it. This trade-off is explored for several sets of instances and the results are compared with the ones obtained by directly solving the natural node-arc formulation. An iterative solution process to the route assignment problem is proposed, based on the well-known Frank Wolfe algorithm. In order to provide a first feasible solution to the Frank Wolfe algorithm, a linear multicommodity min-cost flow problem is solved to optimality by using the decomposition techniques mentioned above. Solutions of this problem are useful for network orientation and design, especially in relation with public transportation systems as the Personal Rapid Transit. A single-commodity robust network design problem is addressed. In this, an undirected graph with edge costs is given together with a discrete set of balance matrices, representing different supply/demand scenarios. The goal is to determine the minimum cost installation of capacities on the edges such that the flow exchange is feasible for every scenario. A set of new instances that are computationally hard for the natural flow formulation are solved by means of a new heuristic algorithm. Finally, an efficient decomposition-based heuristic approach for a large scale stochastic unit commitment problem is presented. The addressed real-world stochastic problem employs at its core a deterministic unit commitment planning model developed by the California Independent System Operator (ISO).