17 resultados para Network Graph and RAN Model

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent decades, two prominent trends have influenced the data modeling field, namely network analysis and machine learning. This thesis explores the practical applications of these techniques within the domain of drug research, unveiling their multifaceted potential for advancing our comprehension of complex biological systems. The research undertaken during this PhD program is situated at the intersection of network theory, computational methods, and drug research. Across six projects presented herein, there is a gradual increase in model complexity. These projects traverse a diverse range of topics, with a specific emphasis on drug repurposing and safety in the context of neurological diseases. The aim of these projects is to leverage existing biomedical knowledge to develop innovative approaches that bolster drug research. The investigations have produced practical solutions, not only providing insights into the intricacies of biological systems, but also allowing the creation of valuable tools for their analysis. In short, the achievements are: • A novel computational algorithm to identify adverse events specific to fixed-dose drug combinations. • A web application that tracks the clinical drug research response to SARS-CoV-2. • A Python package for differential gene expression analysis and the identification of key regulatory "switch genes". • The identification of pivotal events causing drug-induced impulse control disorders linked to specific medications. • An automated pipeline for discovering potential drug repurposing opportunities. • The creation of a comprehensive knowledge graph and development of a graph machine learning model for predictions. Collectively, these projects illustrate diverse applications of data science and network-based methodologies, highlighting the profound impact they can have in supporting drug research activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we study three combinatorial optimization problems belonging to the classes of Network Design and Vehicle Routing problems that are strongly linked in the context of the design and management of transportation networks: the Non-Bifurcated Capacitated Network Design Problem (NBP), the Period Vehicle Routing Problem (PVRP) and the Pickup and Delivery Problem with Time Windows (PDPTW). These problems are NP-hard and contain as special cases some well known difficult problems such as the Traveling Salesman Problem and the Steiner Tree Problem. Moreover, they model the core structure of many practical problems arising in logistics and telecommunications. The NBP is the problem of designing the optimum network to satisfy a given set of traffic demands. Given a set of nodes, a set of potential links and a set of point-to-point demands called commodities, the objective is to select the links to install and dimension their capacities so that all the demands can be routed between their respective endpoints, and the sum of link fixed costs and commodity routing costs is minimized. The problem is called non- bifurcated because the solution network must allow each demand to follow a single path, i.e., the flow of each demand cannot be splitted. Although this is the case in many real applications, the NBP has received significantly less attention in the literature than other capacitated network design problems that allow bifurcation. We describe an exact algorithm for the NBP that is based on solving by an integer programming solver a formulation of the problem strengthened by simple valid inequalities and four new heuristic algorithms. One of these heuristics is an adaptive memory metaheuristic, based on partial enumeration, that could be applied to a wider class of structured combinatorial optimization problems. In the PVRP a fleet of vehicles of identical capacity must be used to service a set of customers over a planning period of several days. Each customer specifies a service frequency, a set of allowable day-combinations and a quantity of product that the customer must receive every time he is visited. For example, a customer may require to be visited twice during a 5-day period imposing that these visits take place on Monday-Thursday or Monday-Friday or Tuesday-Friday. The problem consists in simultaneously assigning a day- combination to each customer and in designing the vehicle routes for each day so that each customer is visited the required number of times, the number of routes on each day does not exceed the number of vehicles available, and the total cost of the routes over the period is minimized. We also consider a tactical variant of this problem, called Tactical Planning Vehicle Routing Problem, where customers require to be visited on a specific day of the period but a penalty cost, called service cost, can be paid to postpone the visit to a later day than that required. At our knowledge all the algorithms proposed in the literature for the PVRP are heuristics. In this thesis we present for the first time an exact algorithm for the PVRP that is based on different relaxations of a set partitioning-like formulation. The effectiveness of the proposed algorithm is tested on a set of instances from the literature and on a new set of instances. Finally, the PDPTW is to service a set of transportation requests using a fleet of identical vehicles of limited capacity located at a central depot. Each request specifies a pickup location and a delivery location and requires that a given quantity of load is transported from the pickup location to the delivery location. Moreover, each location can be visited only within an associated time window. Each vehicle can perform at most one route and the problem is to satisfy all the requests using the available vehicles so that each request is serviced by a single vehicle, the load on each vehicle does not exceed the capacity, and all locations are visited according to their time window. We formulate the PDPTW as a set partitioning-like problem with additional cuts and we propose an exact algorithm based on different relaxations of the mathematical formulation and a branch-and-cut-and-price algorithm. The new algorithm is tested on two classes of problems from the literature and compared with a recent branch-and-cut-and-price algorithm from the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer's disease (AD) is the most common neurodegenerative disease in elderly. Donepezil is the first-line drug used for AD. In section one, the experimental activity was oriented to evaluate and characterize molecular and cellular mechanisms that contribute to neurodegeneration induced by the Aβ1-42 oligomers (Aβ1-42O) and potential neuroprotective effects of the hybrids feruloyl-donepezil compound called PQM130. The effects of PQM130 were compared to donepezil in a murine AD model, obtained by intracerebroventricular (i.c.v.) injection of Aβ1-42O. The intraperitoneal administration of PQM130 (0.5-1 mg/kg) after i.c.v. Aβ1-42O injection improved learning and memory, protecting mice against spatial cognition decline. Moreover, it reduced oxidative stress, neuroinflammation and neuronal apoptosis, induced cell survival and protein synthesis in mice hippocampus. PQM130 modulated different pathways than donepezil, and it is more effective in counteracting Aβ1-42O damage. The section two of the experimental activity was focused on studying a loss of function variants of ABCA7. GWA studies identified mutations in the ABCA7 gene as a risk factor for AD. The mechanism through which ABCA7 contributes to AD is not clear. ABCA7 regulates lipid metabolism and critically controls phagocytic function. To investigate ABCA7 functions, CRISPR/Cas9 technology was used to engineer human iPSCs and to carry the genetic variant Y622*, which results in a premature stop codon, causing ABCA7 loss-of-function. From iPSCs, astrocytes were generated. This study revealed the effects of ABCA7 loss in astrocytes. ABCA7 Y622* mutation induced dysfunctional endocytic trafficking, impairing Aβ clearance, lipid dysregulation and cell homeostasis disruption, alterations that could contribute to AD. Though further studies are needed to confirm the PQM130 neuroprotective role and ABCA7 function in AD, the provided results showed a better understanding of AD pathophysiology, a new therapeutic approach to treat AD, and illustrated an innovative methodology for studying the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Waste prevention (WP) is a strategy which helps societies and individuals to strive for sufficiency in resource consumption within planetary boundaries alongside sustainable and equitable well-being and to decouple the concepts of well-being and life satisfaction from materialism. Within this dissertation, some instruments to promote WP are analysed, by adopting two perspectives: firstly, the one of policymakers, at different governance levels, and secondly, the one of business in the electrical and electronic equipment (EEE) sector. At a national level, the role of WP programmes and market-based instruments (extended producer responsibility, pay-as-you-throw schemes, deposit-refund systems, environmental taxes) in boosting prevention of municipal solid waste is investigated. Then, focusing on the Emilia-Romagna Region (Italy), the performances of the waste management system are assessed over a long period, including some years before and after an institutional reform of the waste management governance regime. The impact of a centralisation (at a regional level) of both planning and economic regulation of the waste services on waste generation and WP is analysed. Finally, to support the regional decision-makers in the prioritisation of publicly funded projects for WP, a framework for the sustainability assessment, the evaluation of success, and the prioritisation of WP measures was applied to some projects implemented by Municipalities in the Region. Trying to close the research gap between engineering and business, WP strategies are discussed as drivers for business model (BM) innovation in EEE sector. Firstly, an innovative approach to a digital tracking solution for professional EEE management is analysed. New BMs which facilitate repair, reuse, remanufacturing, and recycling are created and discussed. Secondly, the impact of BMs based on servitisation and on producer ownership on the extension of equipment lifetime is analysed, by performing a review of real cases of organizations in the EEE sector applying result- and use-oriented BMs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Internet of Things (IoT) has grown rapidly in recent years, leading to an increased need for efficient and secure communication between connected devices. Wireless Sensor Networks (WSNs) are composed of small, low-power devices that are capable of sensing and exchanging data, and are often used in IoT applications. In addition, Mesh WSNs involve intermediate nodes forwarding data to ensure more robust communication. The integration of Unmanned Aerial Vehicles (UAVs) in Mesh WSNs has emerged as a promising solution for increasing the effectiveness of data collection, as UAVs can act as mobile relays, providing extended communication range and reducing energy consumption. However, the integration of UAVs and Mesh WSNs still poses new challenges, such as the design of efficient control and communication strategies. This thesis explores the networking capabilities of WSNs and investigates how the integration of UAVs can enhance their performance. The research focuses on three main objectives: (1) Ground Wireless Mesh Sensor Networks, (2) Aerial Wireless Mesh Sensor Networks, and (3) Ground/Aerial WMSN integration. For the first objective, we investigate the use of the Bluetooth Mesh standard for IoT monitoring in different environments. The second objective focuses on deploying aerial nodes to maximize data collection effectiveness and QoS of UAV-to-UAV links while maintaining the aerial mesh connectivity. The third objective investigates hybrid WMSN scenarios with air-to-ground communication links. One of the main contribution of the thesis consists in the design and implementation of a software framework called "Uhura", which enables the creation of Hybrid Wireless Mesh Sensor Networks and abstracts and handles multiple M2M communication stacks on both ground and aerial links. The operations of Uhura have been validated through simulations and small-scale testbeds involving ground and aerial devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decomposition based approaches are recalled from primal and dual point of view. The possibility of building partially disaggregated reduced master problems is investigated. This extends the idea of aggregated-versus-disaggregated formulation to a gradual choice of alternative level of aggregation. Partial aggregation is applied to the linear multicommodity minimum cost flow problem. The possibility of having only partially aggregated bundles opens a wide range of alternatives with different trade-offs between the number of iterations and the required computation for solving it. This trade-off is explored for several sets of instances and the results are compared with the ones obtained by directly solving the natural node-arc formulation. An iterative solution process to the route assignment problem is proposed, based on the well-known Frank Wolfe algorithm. In order to provide a first feasible solution to the Frank Wolfe algorithm, a linear multicommodity min-cost flow problem is solved to optimality by using the decomposition techniques mentioned above. Solutions of this problem are useful for network orientation and design, especially in relation with public transportation systems as the Personal Rapid Transit. A single-commodity robust network design problem is addressed. In this, an undirected graph with edge costs is given together with a discrete set of balance matrices, representing different supply/demand scenarios. The goal is to determine the minimum cost installation of capacities on the edges such that the flow exchange is feasible for every scenario. A set of new instances that are computationally hard for the natural flow formulation are solved by means of a new heuristic algorithm. Finally, an efficient decomposition-based heuristic approach for a large scale stochastic unit commitment problem is presented. The addressed real-world stochastic problem employs at its core a deterministic unit commitment planning model developed by the California Independent System Operator (ISO).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The market’s challenges bring firms to collaborate with other organizations in order to create Joint Ventures, Alliances and Consortia that are defined as “Interorganizational Networks” (IONs) (Provan, Fish and Sydow; 2007). Some of these IONs are managed through a shared partecipant governance (Provan and Kenis, 2008): a team composed by entrepreneurs and/or directors of each firm of an ION. The research is focused on these kind of management teams and it is based on an input-process-output model: some input variables (work group’s diversity, intra-team's friendship network density) have a direct influence on the process (team identification, shared leadership, interorganizational trust, team trust and intra-team's communication network density), which influence some team outputs, individual innovation behaviors and team effectiveness (team performance, work group satisfaction and ION affective commitment). Data was collected on a sample of 101 entrepreneurs grouped in 28 ION’s government teams and the research hypotheses are tested trough the path analysis and the multilevel models. As expected trust in team and shared leadership are positively and directly related to team effectiveness while team identification and interorganizational trust are indirectly related to the team outputs. The friendship network density among the team’s members has got positive effects on the trust in team and on the communication network density, and also, through the communication network density it improves the level of the teammates ION affective commitment. The shared leadership and its effects on the team effectiveness are fostered from higher level of team identification and weakened from higher level of work group diversity, specifically gender diversity. Finally, the communication network density and shared leadership at the individual level are related to the frequency of individual innovative behaviors. The dissertation’s results give a wider and more precise indication about the management of interfirm network through “shared” form of governance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bivalvia represents an ancient taxon including around 25,000 living species that have adapted to a wide range of environmental conditions, and show a great diversity in body size, shell shapes, and anatomic structure. Bivalves are characterized by highly variable genome sizes and extremely high levels of heterozygosity, which obstacle complete and accurate genome assemblies and hinder further genomic studies. Moreover, some bivalve species presented a stable evolutionary exception to the strictly maternal inheritance of mitochondria, namely doubly uniparental inheritance (DUI), making these species a precious model to study mitochondrial biology. During my PhD, I focused on a DUI species, the Manila clam Ruditapes philippinarum, and my work was two-folded. First, taking advantage of a newly assembled draft genome and a large RNA-seq dataset from different tissues of both sexes, I investigated 1) the role of gene expression and alternative splicing in tissue differentiation; 2) the relationship across tissue specificity, regulatory network connectivity, and sequence evolution; 3) sexual contrasting genetic markers potentially associated with sexual differentiation. The detailed information for this part is in Chapter 2. Second, using the same RNA-seq data, I investigated how nuclear oxidative phosphorylation (OXPHOS) genes coordinate with two divergent mitochondrial genomes in DUI species (mito-nuclear coordination and coevolution). To address this question, I compared transcription, polymorphism, and synonymous codon usage in the mitochondrial and nuclear OXPHOS genes of R. philippinarum in Chapter 3. To my knowledge, this thesis represents the first study exploring the role of alternative splicing in tissue differentiation, and the first study analyzing both transcriptional regulation and sequence evolution to investigate the coordination of OXPHOS genes in bivalves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the thesi is to formulate a suitable Item Response Theory (IRT) based model to measure HRQoL (as latent variable) using a mixed responses questionnaire and relaxing the hypothesis of normal distributed latent variable. The new model is a combination of two models already presented in literature, that is, a latent trait model for mixed responses and an IRT model for Skew Normal latent variable. It is developed in a Bayesian framework, a Markov chain Monte Carlo procedure is used to generate samples of the posterior distribution of the parameters of interest. The proposed model is test on a questionnaire composed by 5 discrete items and one continuous to measure HRQoL in children, the EQ-5D-Y questionnaire. A large sample of children collected in the schools was used. In comparison with a model for only discrete responses and a model for mixed responses and normal latent variable, the new model has better performances, in term of deviance information criterion (DIC), chain convergences times and precision of the estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From the institutional point of view, the legal system of IPR (intellectual property right, hereafter, IPR) is one of incentive institutions of innovation and it plays very important role in the development of economy. According to the law, the owner of the IPR enjoy a kind of exclusive right to use his IP(intellectual property, hereafter, IP), in other words, he enjoys a kind of legal monopoly position in the market. How to well protect the IPR and at the same time to regulate the abuse of IPR is very interested topic in this knowledge-orientated market and it is the basic research question in this dissertation. In this paper, by way of comparing study and by way of law and economic analyses, and based on the Austrian Economics School’s theories, the writer claims that there is no any contradiction between the IPR and competition law. However, in this new economy (high-technology industries), there is really probability of the owner of IPR to abuse his dominant position. And with the characteristics of the new economy, such as, the high rates of innovation, “instant scalability”, network externality and lock-in effects, the IPR “will vest the dominant undertakings with the power not just to monopolize the market but to shift such power from one market to another, to create strong barriers to enter and, in so doing, granting the perpetuation of such dominance for quite a long time.”1 Therefore, in order to keep the order of market, to vitalize the competition and innovation, and to benefit the customer, in EU and US, it is common ways to apply the competition law to regulate the IPR abuse. In Austrian Economic School perspective, especially the Schumpeterian theories, the innovation/competition/monopoly and entrepreneurship are inter-correlated, therefore, we should apply the dynamic antitrust model based on the AES theories to analysis the relationship between the IPR and competition law. China is still a developing country with relative not so high ability of innovation. Therefore, at present, to protect the IPR and to make good use of the incentive mechanism of IPR legal system is the first important task for Chinese government to do. However, according to the investigation reports,2 based on their IPR advantage and capital advantage, some multinational companies really obtained the dominant or monopoly market position in some aspects of some industries, and there are some IPR abuses conducted by such multinational companies. And then, the Chinese government should be paying close attention to regulate any IPR abuse. However, how to effectively regulate the IPR abuse by way of competition law in Chinese situation, from the law and economic theories’ perspective, from the legislation perspective, and from the judicial practice perspective, there is a long way for China to go!

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reliable electronic systems, namely a set of reliable electronic devices connected to each other and working correctly together for the same functionality, represent an essential ingredient for the large-scale commercial implementation of any technological advancement. Microelectronics technologies and new powerful integrated circuits provide noticeable improvements in performance and cost-effectiveness, and allow introducing electronic systems in increasingly diversified contexts. On the other hand, opening of new fields of application leads to new, unexplored reliability issues. The development of semiconductor device and electrical models (such as the well known SPICE models) able to describe the electrical behavior of devices and circuits, is a useful means to simulate and analyze the functionality of new electronic architectures and new technologies. Moreover, it represents an effective way to point out the reliability issues due to the employment of advanced electronic systems in new application contexts. In this thesis modeling and design of both advanced reliable circuits for general-purpose applications and devices for energy efficiency are considered. More in details, the following activities have been carried out: first, reliability issues in terms of security of standard communication protocols in wireless sensor networks are discussed. A new communication protocol is introduced, allows increasing the network security. Second, a novel scheme for the on-die measurement of either clock jitter or process parameter variations is proposed. The developed scheme can be used for an evaluation of both jitter and process parameter variations at low costs. Then, reliability issues in the field of “energy scavenging systems” have been analyzed. An accurate analysis and modeling of the effects of faults affecting circuit for energy harvesting from mechanical vibrations is performed. Finally, the problem of modeling the electrical and thermal behavior of photovoltaic (PV) cells under hot-spot condition is addressed with the development of an electrical and thermal model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficiency of airport airside operations is often compromised by unplanned disruptive events of different kinds, such as bad weather, strikes or technical failures, which negatively influence the punctuality and regularity of operations, causing serious delays and unexpected congestion. They may provoke important impacts and economic losses on passengers, airlines and airport operators, and consequences may propagate in the air network throughout different airports. In order to identify strategies to cope with such events and minimize their impacts, it is crucial to understand how disruptive events affect airports’ performance. The research field related with the risk of severe air transport network disruptions and their impact on society is related to the concepts of vulnerability and resilience. The main objective of this project is to provide a framework that allows to evaluate performance losses and consequences due to unexpected disruptions affecting airport airside operations, supporting the development of a methodology for estimating vulnerability and resilience indicators for airport airside operations. The methodology proposed comprises three phases. In the first phase, airside operations are modelled in both the baseline and disrupted scenarios. The model includes all main airside processes and takes into consideration the uncertainties and dynamics of the system. In the second phase, the model is implemented by using a generic simulation software, AnyLogic. Vulnerability is evaluated by taking into consideration the costs related to flight delays, cancellations and diversions; resilience is determined as a function of the loss of capacity during the entire period of disruption. In the third phase, a Bayesian Network is built in which uncertain variables refer to airport characteristics and disruption type. The Bayesian Network expresses the conditional dependence among these variables and allows to predict the impacts of disruptions on an airside system, determining the elements which influence the system resilience the most.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network monitoring is of paramount importance for effective network management: it allows to constantly observe the network’s behavior to ensure it is working as intended and can trigger both automated and manual remediation procedures in case of failures and anomalies. The concept of SDN decouples the control logic from legacy network infrastructure to perform centralized control on multiple switches in the network, and in this context, the responsibility of switches is only to forward packets according to the flow control instructions provided by controller. However, as current SDN switches only expose simple per-port and per-flow counters, the controller has to do almost all the processing to determine the network state, which causes significant communication overhead and excessive latency for monitoring purposes. The absence of programmability in the data plane of SDN prompted the advent of programmable switches, which allow developers to customize the data-plane pipeline and implement novel programs operating directly in the switches. This means that we can offload certain monitoring tasks to programmable data planes, to perform fine-grained monitoring even at very high packet processing speeds. Given the central importance of network monitoring exploiting programmable data planes, the goal of this thesis is to enable a wide range of monitoring tasks in programmable switches, with a specific focus on the ones equipped with programmable ASICs. Indeed, most network monitoring solutions available in literature do not take computational and memory constraints of programmable switches into due account, preventing, de facto, their successful implementation in commodity switches. This claims that network monitoring tasks can be executed in programmable switches. Our evaluations show that the contributions in this thesis could be used by network administrators as well as network security engineers, to better understand the network status depending on different monitoring metrics, and thus prevent network infrastructure and service outages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, radars have been used in many applications such as precision agriculture and advanced driver assistant systems. Optimal techniques for the estimation of the number of targets and of their coordinates require solving multidimensional optimization problems entailing huge computational efforts. This has motivated the development of sub-optimal estimation techniques able to achieve good accuracy at a manageable computational cost. Another technical issue in advanced driver assistant systems is the tracking of multiple targets. Even if various filtering techniques have been developed, new efficient and robust algorithms for target tracking can be devised exploiting a probabilistic approach, based on the use of the factor graph and the sum-product algorithm. The two contributions provided by this dissertation are the investigation of the filtering and smoothing problems from a factor graph perspective and the development of efficient algorithms for two and three-dimensional radar imaging. Concerning the first contribution, a new factor graph for filtering is derived and the sum-product rule is applied to this graphical model; this allows to interpret known algorithms and to develop new filtering techniques. Then, a general method, based on graphical modelling, is proposed to derive filtering algorithms that involve a network of interconnected Bayesian filters. Finally, the proposed graphical approach is exploited to devise a new smoothing algorithm. Numerical results for dynamic systems evidence that our algorithms can achieve a better complexity-accuracy tradeoff and tracking capability than other techniques in the literature. Regarding radar imaging, various algorithms are developed for frequency modulated continuous wave radars; these algorithms rely on novel and efficient methods for the detection and estimation of multiple superimposed tones in noise. The accuracy achieved in the presence of multiple closely spaced targets is assessed on the basis of both synthetically generated data and of the measurements acquired through two commercial multiple-input multiple-output radars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease with no curative pharmacological treatment. Animal models play an essential role in revealing molecular mechanisms involved in the pathogenesis of the disease. Bleomycin (BLM)-induced lung fibrosis is the most widely used and characterized model for anti-fibrotic drugs screening. However, several issues have been reported, such as the identification of an optimal BLM dose and administration scheme as well as gender-specificity. Moreover, the balance between disease resolution, an appropriate time window for therapeutic intervention and animal welfare remains critical aspects yet to be fully elucidated. In this thesis, Micro CT imaging has been used as a tool to identify the ideal BLM dose regimen to induce sustained lung fibrosis in mice as well as to assess the anti-fibrotic effect of Nintedanib (NINT) treatment upon this BLM administration regimen. In order to select the optimal BLM dose scheme, C57bl/6 male mice were treated with BLM via oropharyngeal aspiration (OA), following either double or triple BLM administration. The triple BLM administration resulted in the most promising scheme, able to balance disease resolution, appropriate time-window for therapeutic intervention and animal welfare. The fibrosis progression was longitudinally assessed by micro-CT every 7 days for 5 weeks after BLM administration and 5 animals were sacrificed at each timepoint for the BALF and histological evaluation. The antifibrotic effect of NINT was assessed following different treatment regimens in this model. Herein, we have developed an optimized mouse model of pulmonary fibrosis, enabling three weeks of the therapeutic window to screen putative anti-fibrotic drugs. micro-CT scanning, allowed us to monitor the progression of lung fibrosis and the therapeutical response longitudinally in the same subject, drastically reducing the number of animals involved in the experiment.