2 resultados para Neonatal ICU
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Enterobacteriaceae genomes evolve through mutations, rearrangements and horizontal gene transfer (HGT). The latter evolutionary pathway works through the acquisition DNA (GEI) modules of foreign origin that enhances fitness of the host to a given environment. The genome of E. coli IHE3034, a strain isolated from a case of neonatal meningitis, has recently been sequenced and its subsequent sequence analysis has predicted 18 possible GEIs, of which: 8 have not been previously described, 5 fully meet the pathogenic island definition and at least 10 that seem to be of prophagic origin. In order to study the GEI distribution of our reference strain, we screened for the presence 18 GEIs a panel of 132 strains, representative of E. coli diversity. Also, using an inverse nested PCR approach we identified 9 GEI that can form an extrachromosomal circular intermediate (CI) and their respective attachment sites (att). Further, we set up a qPCR approach that allowed us to determine the excision rates of 5 genomic islands in different growth conditions. Four islands, specific for strains appertaining to the sequence type complex 95 (STC95), have been deleted in order to assess their function in a Dictyostelium discoideum grazing assays. Overall, the distribution data presented here indicate that 16 IHE3034 GEIs are more associated to the STC95 strains. Also the functional and genetic characterization has uncovered that GEI 13, 17 and 19 are involved in the resistance to phagocitation by Dictyostelium d thus suggesting a possible role in the adaptation of the pathogen during certain stages of infection.
Resumo:
BACKGROUND: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in pregnancy has been associated with multiple adverse pregnancy outcomes, including the risk of in utero mother-to-child transmission. Short- and long-term outcomes of SARS-CoV-2 exposed neonates and the extent to which maternal SARS-CoV-2 antibodies are transferred to neonates are still unclear. METHODS: Prospective observational study enrolling neonates born to mothers with SARS-CoV-2 infection in pregnancy, between April 2020-April 2021. Neonates were evaluated at birth and enrolled in a 12-month follow-up. SARS-CoV-2 IgG transplacental transfer ratio was assessed in mother-neonate dyads at birth. Maternal derived IgG were followed in infants until negativizing. RESULTS: Of 2745 neonates, 106 (3.9%) were delivered by mothers with SARS-CoV-2 infection in pregnancy. Seventy-six of 106 (71.7%) mothers were symptomatic. Median gestational age and mean birth weight were 39 weeks (range 25+5-41+4) and 3305 grams (SD 468). Six of 106 (6%) neonates were born preterm, without significant differences between asymptomatic and symptomatic mothers (P=0.67). No confirmed cases of in utero infection were detected. All infants had normal cerebral ultrasound and clinical evaluation at birth and during follow-up, until a median age of 7 months (range 5-12). All mothers and 96/106 (90.5%) neonates had detectable SARS-CoV-2 IgG at birth. Transplacental transfer ratio was higher following second trimester maternal infections (mean 0.940.46 versus 1.070.64 versus 0.750.44, P=0.039), but was not significantly different between asymptomatic and symptomatic women (P=0.20). IgG level in infants progressively decreased after birth: at 3 months 53% (51/96) and at four months 68% (63/96) had lost maternal antibodies respectively. The durability of maternal antibodies was positively correlated to the IgG level at birth (r=0.66; P<0.00001). CONCLUSIONS: Maternal SARS-CoV-2 infection was not associated with increased neonatal or long-term morbidity. No cases of confirmed in utero infection were detected. Efficient transplacental IgG transfer was found following second trimester maternal infections.