5 resultados para Near-infrared and visible light emitters

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The motivation for the work presented in this thesis is to retrieve profile information for the atmospheric trace constituents nitrogen dioxide (NO2) and ozone (O3) in the lower troposphere from remote sensing measurements. The remote sensing technique used, referred to as Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS), is a recent technique that represents a significant advance on the well-established DOAS, especially for what it concerns the study of tropospheric trace consituents. NO2 is an important trace gas in the lower troposphere due to the fact that it is involved in the production of tropospheric ozone; ozone and nitrogen dioxide are key factors in determining the quality of air with consequences, for example, on human health and the growth of vegetation. To understand the NO2 and ozone chemistry in more detail not only the concentrations at ground but also the acquisition of the vertical distribution is necessary. In fact, the budget of nitrogen oxides and ozone in the atmosphere is determined both by local emissions and non-local chemical and dynamical processes (i.e. diffusion and transport at various scales) that greatly impact on their vertical and temporal distribution: thus a tool to resolve the vertical profile information is really important. Useful measurement techniques for atmospheric trace species should fulfill at least two main requirements. First, they must be sufficiently sensitive to detect the species under consideration at their ambient concentration levels. Second, they must be specific, which means that the results of the measurement of a particular species must be neither positively nor negatively influenced by any other trace species simultaneously present in the probed volume of air. Air monitoring by spectroscopic techniques has proven to be a very useful tool to fulfill these desirable requirements as well as a number of other important properties. During the last decades, many such instruments have been developed which are based on the absorption properties of the constituents in various regions of the electromagnetic spectrum, ranging from the far infrared to the ultraviolet. Among them, Differential Optical Absorption Spectroscopy (DOAS) has played an important role. DOAS is an established remote sensing technique for atmospheric trace gases probing, which identifies and quantifies the trace gases in the atmosphere taking advantage of their molecular absorption structures in the near UV and visible wavelengths of the electromagnetic spectrum (from 0.25 μm to 0.75 μm). Passive DOAS, in particular, can detect the presence of a trace gas in terms of its integrated concentration over the atmospheric path from the sun to the receiver (the so called slant column density). The receiver can be located at ground, as well as on board an aircraft or a satellite platform. Passive DOAS has, therefore, a flexible measurement configuration that allows multiple applications. The ability to properly interpret passive DOAS measurements of atmospheric constituents depends crucially on how well the optical path of light collected by the system is understood. This is because the final product of DOAS is the concentration of a particular species integrated along the path that radiation covers in the atmosphere. This path is not known a priori and can only be evaluated by Radiative Transfer Models (RTMs). These models are used to calculate the so called vertical column density of a given trace gas, which is obtained by dividing the measured slant column density to the so called air mass factor, which is used to quantify the enhancement of the light path length within the absorber layers. In the case of the standard DOAS set-up, in which radiation is collected along the vertical direction (zenith-sky DOAS), calculations of the air mass factor have been made using “simple” single scattering radiative transfer models. This configuration has its highest sensitivity in the stratosphere, in particular during twilight. This is the result of the large enhancement in stratospheric light path at dawn and dusk combined with a relatively short tropospheric path. In order to increase the sensitivity of the instrument towards tropospheric signals, measurements with the telescope pointing the horizon (offaxis DOAS) have to be performed. In this circumstances, the light path in the lower layers can become very long and necessitate the use of radiative transfer models including multiple scattering, the full treatment of atmospheric sphericity and refraction. In this thesis, a recent development in the well-established DOAS technique is described, referred to as Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS). The MAX-DOAS consists in the simultaneous use of several off-axis directions near the horizon: using this configuration, not only the sensitivity to tropospheric trace gases is greatly improved, but vertical profile information can also be retrieved by combining the simultaneous off-axis measurements with sophisticated RTM calculations and inversion techniques. In particular there is a need for a RTM which is capable of dealing with all the processes intervening along the light path, supporting all DOAS geometries used, and treating multiple scattering events with varying phase functions involved. To achieve these multiple goals a statistical approach based on the Monte Carlo technique should be used. A Monte Carlo RTM generates an ensemble of random photon paths between the light source and the detector, and uses these paths to reconstruct a remote sensing measurement. Within the present study, the Monte Carlo radiative transfer model PROMSAR (PROcessing of Multi-Scattered Atmospheric Radiation) has been developed and used to correctly interpret the slant column densities obtained from MAX-DOAS measurements. In order to derive the vertical concentration profile of a trace gas from its slant column measurement, the AMF is only one part in the quantitative retrieval process. One indispensable requirement is a robust approach to invert the measurements and obtain the unknown concentrations, the air mass factors being known. For this purpose, in the present thesis, we have used the Chahine relaxation method. Ground-based Multiple AXis DOAS, combined with appropriate radiative transfer models and inversion techniques, is a promising tool for atmospheric studies in the lower troposphere and boundary layer, including the retrieval of profile information with a good degree of vertical resolution. This thesis has presented an application of this powerful comprehensive tool for the study of a preserved natural Mediterranean area (the Castel Porziano Estate, located 20 km South-West of Rome) where pollution is transported from remote sources. Application of this tool in densely populated or industrial areas is beginning to look particularly fruitful and represents an important subject for future studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase 1: To validate Near-Infrared Reflectance Analysis (NIRA) as a fast, reliable and suitable method for routine evaluation of human milk’s nitrogen and fat content. Phase 2: To determine whether fat content, protein content and osmolality of HM before and after fortification may affect gastroesophageal reflux (GER) in symptomatic preterm infants. Patients and Methods: Phase 1: 124 samples of expressed human milk (55 from preterm mothers and 69 from term mothers) were used to validate NIRA against traditional methods (Gerber method for fat and Kjeldhal method for nitrogen). Phase 2: GER was evaluated in 17 symptomatic preterm newborns fed naïve and fortified HM by combined pH/intraluminal-impedance monitoring (pH-MII). HM fat and protein content was analysed by a Near-Infrared-Reflectance-Analysis (NIRA). HM osmolality was tested before and after fortification. GER indexes measured before and after fortification were compared, and were also related with HM fat and protein content and osmolality before and after fortification. Results: Phase 1: · A strong agreement was found between traditional methods’ and NIRA’s results (expressed as g/100 g of milk), both for fat and nitrogen content in term (mean fat content: NIRA=2.76; Gerber=2.76; mean nitrogen content: NIRA=1.88; Kjeldhal =1.92) and preterm (mean fat content: NIRA=3.56; Kjeldhal=3.52; mean nitrogen content: NIRA=1.91; Kjeldhal =1.89) mother’s milk. · Nitrogen content of the milk samples, measured by NIRA, ranged from 1.18 to 2.71 g/100 g of milk in preterm milk and from 1.48 to 2.47 in term milk; fat content ranged from 1.27 to 6.23 g/100 g of milk in preterm milk and from 1.01 to 6.01 g/100 g of milk in term milk. Phase 2: · An inverse correlation was found between naïve HM protein content and acid reflux index (RIpH: p=0.041, rho=-0.501). · After fortification, osmolality often exceeded the values recommended for infant feeds; furthermore, a statistically significant (p<.05) increase in non acid reflux indexes was observed. Conclusions: NIRA can be used as a fast, reliable and suitable tool for routine monitoring of macronutrient content of human milk. Protein content of naïve HM may influence acid GER in preterm infants. A standard fortification of HM may worsen non acid GER indexes and, due to the extreme variability in HM composition, may overcome both recommended protein intake and HM osmolality. Thus, an individualized fortification, based on the analysis of the composition of naïve HM, could optimize both nutrient intake and feeding tolerance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The European Union set the ambitious target of reducing energy consumption by 20% within 2020. This goal demands a tremendous change in how we generate and consume energy and urgently calls for an aggressive policy on energy efficiency. Since 19% of the European electrical energy is used for lighting, considerable savings can be achieved with the development of novel and more efficient lighting systems. In this thesis, accomplished in the frame of the EU project CELLO, I report some selected goals we achieved attempting to develop highly efficient, flat, low cost and flexible light sources using Light-Emitting Electrochemical Cells (LECs), based on ionic cyclometalated iridium(III) complexes. After an extensive introduction about LECs and solid-state lighting in general, I focus on the research we carried out on cyclometalated iridium(III) complexes displaying deep-blue emission, which has turned out to be a rather challenging task. In order to demonstrate the wide versatility of this class of compounds, I also report a case in which some tailored iridium(III) complexes act as near-infrared (NIR) sources. In fact, standard NIR emitting devices are typically expensive and, also in this case, LECs could serve as low-cost alternatives in fields were NIR luminescence is crucial, such as telecommunications and bioimaging. Since LECs are based on only one active material, in the last chapter I stress the importance of an integrated approach toward the right selection of suitable emitters not only from the photophysical, but also from the point of view of material science. An iridium(III) complex, once in the device, is interacting with ionic liquids, metal cathodes, electric fields, etc. All these interactions should be taken in to account if Europe really wants to implement more efficient lighting paradigms, generating light beyond research labs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Phd thesis was entirely developed at the Telescopio Nazionale Galileo (TNG, Roque de los Muchachos, La Palma Canary Islands) with the aim of designing, developing and implementing a new Graphical User Interface (GUI) for the Near Infrared Camera Spectrometer (NICS) installed on the Nasmyth A of the telescope. The idea of a new GUI for NICS has risen for optimizing the astronomers work through a set of powerful tools not present in the existing GUI, such as the possibility to move automatically, an object on the slit or do a very preliminary images analysis and spectra extraction. The new GUI also provides a wide and versatile image display, an automatic procedure to find out the astronomical objects and a facility for the automatic image crosstalk correction. In order to test the overall correct functioning of the new GUI for NICS, and providing some information on the atmospheric extinction at the TNG site, two telluric standard stars have been spectroscopically observed within some engineering time, namely Hip031303 and Hip031567. The used NICS set-up is as follows: Large Field (0.25'' /pixel) mode, 0.5'' slit and spectral dispersion through the AMICI prism (R~100), and the higher resolution (R~1000) JH and HK grisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years and thanks to innovative technological advances in supplemental lighting sources and photo-selective filters, light quality manipulation (i.e. spectral composition of sunlight) have demonstrated positive effects on plant performance in ornamentals and vegetable crops. However, this aspect has been much less studied in fruit trees due to the difficulty of conditioning the light environment of orchards. The aim of the present PhD research was to study the use of different colored nets with selective light transmission in the blue (400 – 500 nm), red (600 – 700 nm) and near infrared (700 – 1100 nm) wavelengths as a tool to the light quality management and its morphological and physiological effects in field-grown apple trees. Chapter I provides a review the current status on physiological and technological advances on light quality management in fruit trees. Chapter II shows the main effect of colored nets on morpho-anatomical (stomata density, mesophyll structure and leaf mass area index) characteristics in apple leaves. Chapter III provides an analysis about the effect of micro-environmental conditions under colored nets on leaf stomatal conductance and leaf photosynthetic capacity. Chapter IV describes a study approach to evaluate the impact of colored nets on fruit growth potential in apples. Summing up results obtained in the present PhD dissertation clearly demonstrate that light quality management through photo-selective colored nets presents an interesting potential for the manipulation of plant morphological and physiological traits in apple trees. Cover orchards with colored nets might be and alternative technology to address many of the most important challenges of modern fruit growing, such as: the need for the efficient use of natural resources (water, soil and nutrients) the reduction of environmental impacts and the mitigation of possible negative effects of global climate change.