17 resultados para Natural Language Processing,Recommender Systems,Android,Applicazione mobile

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decades, Artificial Intelligence has witnessed multiple breakthroughs in deep learning. In particular, purely data-driven approaches have opened to a wide variety of successful applications due to the large availability of data. Nonetheless, the integration of prior knowledge is still required to compensate for specific issues like lack of generalization from limited data, fairness, robustness, and biases. In this thesis, we analyze the methodology of integrating knowledge into deep learning models in the field of Natural Language Processing (NLP). We start by remarking on the importance of knowledge integration. We highlight the possible shortcomings of these approaches and investigate the implications of integrating unstructured textual knowledge. We introduce Unstructured Knowledge Integration (UKI) as the process of integrating unstructured knowledge into machine learning models. We discuss UKI in the field of NLP, where knowledge is represented in a natural language format. We identify UKI as a complex process comprised of multiple sub-processes, different knowledge types, and knowledge integration properties to guarantee. We remark on the challenges of integrating unstructured textual knowledge and bridge connections with well-known research areas in NLP. We provide a unified vision of structured knowledge extraction (KE) and UKI by identifying KE as a sub-process of UKI. We investigate some challenging scenarios where structured knowledge is not a feasible prior assumption and formulate each task from the point of view of UKI. We adopt simple yet effective neural architectures and discuss the challenges of such an approach. Finally, we identify KE as a form of symbolic representation. From this perspective, we remark on the need of defining sophisticated UKI processes to verify the validity of knowledge integration. To this end, we foresee frameworks capable of combining symbolic and sub-symbolic representations for learning as a solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most visionary goals of Artificial Intelligence is to create a system able to mimic and eventually surpass the intelligence observed in biological systems including, ambitiously, the one observed in humans. The main distinctive strength of humans is their ability to build a deep understanding of the world by learning continuously and drawing from their experiences. This ability, which is found in various degrees in all intelligent biological beings, allows them to adapt and properly react to changes by incrementally expanding and refining their knowledge. Arguably, achieving this ability is one of the main goals of Artificial Intelligence and a cornerstone towards the creation of intelligent artificial agents. Modern Deep Learning approaches allowed researchers and industries to achieve great advancements towards the resolution of many long-standing problems in areas like Computer Vision and Natural Language Processing. However, while this current age of renewed interest in AI allowed for the creation of extremely useful applications, a concerningly limited effort is being directed towards the design of systems able to learn continuously. The biggest problem that hinders an AI system from learning incrementally is the catastrophic forgetting phenomenon. This phenomenon, which was discovered in the 90s, naturally occurs in Deep Learning architectures where classic learning paradigms are applied when learning incrementally from a stream of experiences. This dissertation revolves around the Continual Learning field, a sub-field of Machine Learning research that has recently made a comeback following the renewed interest in Deep Learning approaches. This work will focus on a comprehensive view of continual learning by considering algorithmic, benchmarking, and applicative aspects of this field. This dissertation will also touch on community aspects such as the design and creation of research tools aimed at supporting Continual Learning research, and the theoretical and practical aspects concerning public competitions in this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep Neural Networks (DNNs) have revolutionized a wide range of applications beyond traditional machine learning and artificial intelligence fields, e.g., computer vision, healthcare, natural language processing and others. At the same time, edge devices have become central in our society, generating an unprecedented amount of data which could be used to train data-hungry models such as DNNs. However, the potentially sensitive or confidential nature of gathered data poses privacy concerns when storing and processing them in centralized locations. To this purpose, decentralized learning decouples model training from the need of directly accessing raw data, by alternating on-device training and periodic communications. The ability of distilling knowledge from decentralized data, however, comes at the cost of facing more challenging learning settings, such as coping with heterogeneous hardware and network connectivity, statistical diversity of data, and ensuring verifiable privacy guarantees. This Thesis proposes an extensive overview of decentralized learning literature, including a novel taxonomy and a detailed description of the most relevant system-level contributions in the related literature for privacy, communication efficiency, data and system heterogeneity, and poisoning defense. Next, this Thesis presents the design of an original solution to tackle communication efficiency and system heterogeneity, and empirically evaluates it on federated settings. For communication efficiency, an original method, specifically designed for Convolutional Neural Networks, is also described and evaluated against the state-of-the-art. Furthermore, this Thesis provides an in-depth review of recently proposed methods to tackle the performance degradation introduced by data heterogeneity, followed by empirical evaluations on challenging data distributions, highlighting strengths and possible weaknesses of the considered solutions. Finally, this Thesis presents a novel perspective on the usage of Knowledge Distillation as a mean for optimizing decentralized learning systems in settings characterized by data heterogeneity or system heterogeneity. Our vision on relevant future research directions close the manuscript.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of ancient, undeciphered scripts presents unique challenges, that depend both on the nature of the problem and on the peculiarities of each writing system. In this thesis, I present two computational approaches that are tailored to two different tasks and writing systems. The first of these methods is aimed at the decipherment of the Linear A afraction signs, in order to discover their numerical values. This is achieved with a combination of constraint programming, ad-hoc metrics and paleographic considerations. The second main contribution of this thesis regards the creation of an unsupervised deep learning model which uses drawings of signs from ancient writing system to learn to distinguish different graphemes in the vector space. This system, which is based on techniques used in the field of computer vision, is adapted to the study of ancient writing systems by incorporating information about sequences in the model, mirroring what is often done in natural language processing. In order to develop this model, the Cypriot Greek Syllabary is used as a target, since this is a deciphered writing system. Finally, this unsupervised model is adapted to the undeciphered Cypro-Minoan and it is used to answer open questions about this script. In particular, by reconstructing multiple allographs that are not agreed upon by paleographers, it supports the idea that Cypro-Minoan is a single script and not a collection of three script like it was proposed in the literature. These results on two different tasks shows that computational methods can be applied to undeciphered scripts, despite the relatively low amount of available data, paving the way for further advancement in paleography using these methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid progression of biomedical research coupled with the explosion of scientific literature has generated an exigent need for efficient and reliable systems of knowledge extraction. This dissertation contends with this challenge through a concentrated investigation of digital health, Artificial Intelligence, and specifically Machine Learning and Natural Language Processing's (NLP) potential to expedite systematic literature reviews and refine the knowledge extraction process. The surge of COVID-19 complicated the efforts of scientists, policymakers, and medical professionals in identifying pertinent articles and assessing their scientific validity. This thesis presents a substantial solution in the form of the COKE Project, an initiative that interlaces machine reading with the rigorous protocols of Evidence-Based Medicine to streamline knowledge extraction. In the framework of the COKE (“COVID-19 Knowledge Extraction framework for next-generation discovery science”) Project, this thesis aims to underscore the capacity of machine reading to create knowledge graphs from scientific texts. The project is remarkable for its innovative use of NLP techniques such as a BERT + bi-LSTM language model. This combination is employed to detect and categorize elements within medical abstracts, thereby enhancing the systematic literature review process. The COKE project's outcomes show that NLP, when used in a judiciously structured manner, can significantly reduce the time and effort required to produce medical guidelines. These findings are particularly salient during times of medical emergency, like the COVID-19 pandemic, when quick and accurate research results are critical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using Big Data and Natural Language Processing (NLP) tools, this dissertation investigates the narrative strategies that atypical actors can leverage to deal with the adverse reactions they often elicit. Extensive research shows that atypical actors, those who fail to abide by established contextual standards and norms, are subject to skepticism and face a higher risk of rejection. Indeed, atypical actors combine features and behaviors in unconventional ways, thereby generating confusion in the audience and instilling doubts about their propositions' legitimacy. However, the same atypicality is often cited as the precursor to socio-cultural innovation and a strategic act to expand the capacity for delivering valued goods and services. Contextualizing the conditions under which atypicality is celebrated or punished has been a significant theoretical challenge for scholars interested in reconciling this tension. Nevertheless, prior work has focused on audience side factors or on actor-side characteristics that are only scantily under an actor's control (e.g., status and reputation). This dissertation demonstrates that atypical actors can use strategically crafted narratives to mitigate against the audience’s negative response. In particular, when atypical actors evoke conventional features in their story, they are more likely to overcome the illegitimacy discount usually applied to them. Moreover, narratives become successful navigational devices for atypicality when atypical actors use a more abstract language. This simplifies classification and provides the audience with more flexibility to interpret and understand them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The general aim of the thesis was to investigate how and to what extent the characteristics of action organization are reflected in language, and how they influence language processing and understanding. Even though a huge amount of research has been devoted to the study of the motor effects of language, this issue is very debated in literature. Namely, the majority of the studies have focused on low-level motor effects such as effector-relatedness of action, whereas only a few studies have started to systematically investigate how specific aspects of action organization are encoded and reflected in language. After a review of previous studies on the relationship between language comprehension and action (chapter 1) and a critical discussion of some of them (chapter 2), the thesis is composed by three experimental chapters, each devoted to a specific aspect of action organization. Chapter 3 presents a study designed with the aim to disentangle the effective time course of the involvement of the motor system during language processing. Three kinematics experiments were designed in order to determine whether and, at which stage of motor planning and execution effector-related action verbs influence actions executed with either the same or a different effector. Results demonstrate that the goal of an action can be linguistically re-activated, producing a modulation of the motor response. In chapter 4, a second study investigates the interplay between the role of motor perspective (agent) and the organization of action in motor chains. More specifically, this kinematics study aims at deepening how goal can be translated in language, using as stimuli simple sentences composed by a pronoun (I, You, He/She) and a verb. Results showed that the perspective activated by the pronoun You reflects the motor pattern of the “agent” combined with the chain structure of the verb. These data confirm an early involvement of the motor system in language processing, suggesting that it is specifically modulated by the activation of the agent’s perspective. In chapter 5, the issue of perspective is specifically investigated, focusing on its role in language comprehension. In particular, this study aimed at determining how a specific perspective (induced for example by a personal pronoun) modulates motor behaviour during and after language processing. A classical compatibility effect (the Action-sentence compatibility effect) has been used to this aim. In three behavioural experiments the authors investigated how the ACE is modulated by taking first or third person perspective. Results from these experiments showed that the ACE effect occurs only when a first-person perspective is activated by the sentences used as stimuli. Overall, the data from this thesis contributed to disentangle several aspects of how action organization is translated in language, and then reactivated during language processing. This constitutes a new contribution to the field, adding lacking information on how specific aspects such as goal and perspective are linguistically described. In addition, these studies offer a new point of view to understand the functional implications of the involvement of the motor system during language comprehension, specifically from the point of view of our social interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesi affronta il concetto di esposizione al rischio occupazionale e il suo scopo è quello di indagare l’ambiente di lavoro e il comportamento dei lavoratori, con l'obiettivo di ridurre il tasso di incidenza degli infortuni sul lavoro ed eseguire la riduzione dei rischi. In primo luogo, è proposta una nuova metodologia denominata MIMOSA (Methodology for the Implementation and Monitoring of Occupational SAfety), che quantifica il livello di "salute e sicurezza" di una qualsiasi impresa. Al fine di raggiungere l’obiettivo si è reso necessario un approccio multidisciplinare in cui concetti d’ingegneria e di psicologia sono stati combinati per sviluppare una metodologia di previsione degli incidenti e di miglioramento della sicurezza sul lavoro. I risultati della sperimentazione di MIMOSA hanno spinto all'uso della Logica Fuzzy nel settore della sicurezza occupazionale per migliorare la metodologia stessa e per superare i problemi riscontrati nell’incertezza della raccolta dei dati. La letteratura mostra che i fattori umani, la percezione del rischio e il comportamento dei lavoratori in relazione al rischio percepito, hanno un ruolo molto importante nella comparsa degli incidenti. Questa considerazione ha portato ad un nuovo approccio e ad una seconda metodologia che consiste nella prevenzione di incidenti, non solo sulla base dell'analisi delle loro dinamiche passate. Infatti la metodologia considera la valutazione di un indice basato sui comportamenti proattivi dei lavoratori e sui danni potenziali degli eventi incidentali evitati. L'innovazione consiste nell'applicazione della Logica Fuzzy per tener conto dell’"indeterminatezza" del comportamento umano e del suo linguaggio naturale. In particolare l’applicazione è incentrata sulla proattività dei lavoratori e si prefigge di impedire l'evento "infortunio", grazie alla generazione di una sorta d’indicatore di anticipo. Questa procedura è stata testata su un’azienda petrolchimica italiana.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, an increasing attention has been given to the optimization of the performances of new supramolecular systems, as antennas for light collection. In such background, the aim of this thesis was the study of multichromophoric architectures capable of performing such basic action. A synthetic antenna should consist of a structure with large UV-Vis absorption cross-section, panchromatic absorption, fixed orientation of the components and suitable energy gradients between them, in order to funnel absorbed energy towards a specific site, through fast energy-transfer processes. Among the systems investigated in this thesis, three suitable classes of compounds can be identified: 1) transition metal-based multichromophoric arrays, as models for antenna construction, 2) free-base trans-A2B-phenylcorroles, as self-assembling systems to make effective mimics of the photosynthetic system, and 3) a natural harvester, the Photosystem I, immobilized on the photoanode of a solar-to-fuel conversion device. The discussion starts with the description of the photophysical properties of dinuclear quinonoid organometallic systems, able to fulfil some of the above mentioned absorption requirements, displaying in some cases panchromatic absorption. The investigation is extended to the efficient energy transfer processes occurring in supramolecular architectures, suitably organized around rigid organic scaffolds, such as spiro-bifluorene and triptycene. Furthermore, the photophysical characterization of three trans-A2B-phenylcorroles with different substituents on the meso-phenyl ring is introduced, revealing the tendency of such macrocycles to self-organize into dimers, by mimicking natural self-aggregates antenna systems. In the end, the photophysical analysis moved towards the natural super-complex PSI-LHCI, immobilized on the hematite surface of the photoanode of a bio-hybrid dye-sensitized solar cell. The importance of the entire work is related to the need for a deep understanding of the energy transfer mechanisms occurring in supramolecules, to gain insights and improve the strategies for governing the directionality of the energy flow in the construction of well-performing antenna systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the framework of industrial problems, the application of Constrained Optimization is known to have overall very good modeling capability and performance and stands as one of the most powerful, explored, and exploited tool to address prescriptive tasks. The number of applications is huge, ranging from logistics to transportation, packing, production, telecommunication, scheduling, and much more. The main reason behind this success is to be found in the remarkable effort put in the last decades by the OR community to develop realistic models and devise exact or approximate methods to solve the largest variety of constrained or combinatorial optimization problems, together with the spread of computational power and easily accessible OR software and resources. On the other hand, the technological advancements lead to a data wealth never seen before and increasingly push towards methods able to extract useful knowledge from them; among the data-driven methods, Machine Learning techniques appear to be one of the most promising, thanks to its successes in domains like Image Recognition, Natural Language Processes and playing games, but also the amount of research involved. The purpose of the present research is to study how Machine Learning and Constrained Optimization can be used together to achieve systems able to leverage the strengths of both methods: this would open the way to exploiting decades of research on resolution techniques for COPs and constructing models able to adapt and learn from available data. In the first part of this work, we survey the existing techniques and classify them according to the type, method, or scope of the integration; subsequently, we introduce a novel and general algorithm devised to inject knowledge into learning models through constraints, Moving Target. In the last part of the thesis, two applications stemming from real-world projects and done in collaboration with Optit will be presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed argumentation technology is a computational approach incorporating argumentation reasoning mechanisms within multi-agent systems. For the formal foundations of distributed argumentation technology, in this thesis we conduct a principle-based analysis of structured argumentation as well as abstract multi-agent and abstract bipolar argumentation. The results of the principle-based approach of these theories provide an overview and guideline for further applications of the theories. Moreover, in this thesis we explore distributed argumentation technology using distributed ledgers. We envision an Intelligent Human-input-based Blockchain Oracle (IHiBO), an artificial intelligence tool for storing argumentation reasoning. We propose a decentralized and secure architecture for conducting decision-making, addressing key concerns of trust, transparency, and immutability. We model fund management with agent argumentation in IHiBO and analyze its compliance with European fund management legal frameworks. We illustrate how bipolar argumentation balances pros and cons in legal reasoning in a legal divorce case, and how the strength of arguments in natural language can be represented in structured arguments. Finally, we discuss how distributed argumentation technology can be used to advance risk management, regulatory compliance of distributed ledgers for financial securities, and dialogue techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data coming out from various researches carried out over the last years in Italy on the problem of school dispersion in secondary school show that difficulty in studying mathematics is one of the most frequent reasons of discomfort reported by students. Nevertheless, it is definitely unrealistic to think we can do without such knowledge in today society: mathematics is largely taught in secondary school and it is not confined within technical-scientific courses only. It is reasonable to say that, although students may choose academic courses that are, apparently, far away from mathematics, all students will have to come to terms, sooner or later in their life, with this subject. Among the reasons of discomfort given by the study of mathematics, some mention the very nature of this subject and in particular the complex symbolic language through which it is expressed. In fact, mathematics is a multimodal system composed by oral and written verbal texts, symbol expressions, such as formulae and equations, figures and graphs. For this, the study of mathematics represents a real challenge to those who suffer from dyslexia: this is a constitutional condition limiting people performances in relation to the activities of reading and writing and, in particular, to the study of mathematical contents. Here the difficulties in working with verbal and symbolic codes entail, in turn, difficulties in the comprehension of texts from which to deduce operations that, once combined together, would lead to the problem final solution. Information technologies may support this learning disorder effectively. However, these tools have some implementation limits, restricting their use in the study of scientific subjects. Vocal synthesis word processors are currently used to compensate difficulties in reading within the area of classical studies, but they are not used within the area of mathematics. This is because the vocal synthesis (or we should say the screen reader supporting it) is not able to interpret all that is not textual, such as symbols, images and graphs. The DISMATH software, which is the subject of this project, would allow dyslexic users to read technical-scientific documents with the help of a vocal synthesis, to understand the spatial structure of formulae and matrixes, to write documents with a technical-scientific content in a format that is compatible with main scientific editors. The system uses LaTex, a text mathematic language, as mediation system. It is set up as LaTex editor, whose graphic interface, in line with main commercial products, offers some additional specific functions with the capability to support the needs of users who are not able to manage verbal and symbolic codes on their own. LaTex is translated in real time into a standard symbolic language and it is read by vocal synthesis in natural language, in order to increase, through the bimodal representation, the ability to process information. The understanding of the mathematic formula through its reading is made possible by the deconstruction of the formula itself and its “tree” representation, so allowing to identify the logical elements composing it. Users, even without knowing LaTex language, are able to write whatever scientific document they need: in fact the symbolic elements are recalled by proper menus and automatically translated by the software managing the correct syntax. The final aim of the project, therefore, is to implement an editor enabling dyslexic people (but not only them) to manage mathematic formulae effectively, through the integration of different software tools, so allowing a better teacher/learner interaction too.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activity of the Ph.D. student Juri Luca De Coi involved the research field of policy languages and can be divided in three parts. The first part of the Ph.D. work investigated the state of the art in policy languages, ending up with: (i) identifying the requirements up-to-date policy languages have to fulfill; (ii) defining a policy language able to fulfill such requirements (namely, the Protune policy language); and (iii) implementing an infrastructure able to enforce policies expressed in the Protune policy language. The second part of the Ph.D. work focused on simplifying the activity of defining policies and ended up with: (i) identifying a subset of the controlled natural language ACE to express Protune policies; (ii) implementing a mapping between ACE policies and Protune policies; and (iii) adapting the ACE Editor to guide users step by step when defining ACE policies. The third part of the Ph.D. work tested the feasibility of the chosen approach by applying it to meaningful real-world problems, among which: (i) development of a security layer on top of RDF stores; and (ii) efficient policy-aware access to metadata stores. The research activity has been performed in tight collaboration with the Leibniz Universität Hannover and further European partners within the projects REWERSE, TENCompetence and OKKAM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Thesis is composed of a collection of works written in the period 2019-2022, whose aim is to find methodologies of Artificial Intelligence (AI) and Machine Learning to detect and classify patterns and rules in argumentative and legal texts. We define our approach “hybrid”, since we aimed at designing hybrid combinations of symbolic and sub-symbolic AI, involving both “top-down” structured knowledge and “bottom-up” data-driven knowledge. A first group of works is dedicated to the classification of argumentative patterns. Following the Waltonian model of argument and the related theory of Argumentation Schemes, these works focused on the detection of argumentative support and opposition, showing that argumentative evidences can be classified at fine-grained levels without resorting to highly engineered features. To show this, our methods involved not only traditional approaches such as TFIDF, but also some novel methods based on Tree Kernel algorithms. After the encouraging results of this first phase, we explored the use of a some emerging methodologies promoted by actors like Google, which have deeply changed NLP since 2018-19 — i.e., Transfer Learning and language models. These new methodologies markedly improved our previous results, providing us with best-performing NLP tools. Using Transfer Learning, we also performed a Sequence Labelling task to recognize the exact span of argumentative components (i.e., claims and premises), thus connecting portions of natural language to portions of arguments (i.e., to the logical-inferential dimension). The last part of our work was finally dedicated to the employment of Transfer Learning methods for the detection of rules and deontic modalities. In this case, we explored a hybrid approach which combines structured knowledge coming from two LegalXML formats (i.e., Akoma Ntoso and LegalRuleML) with sub-symbolic knowledge coming from pre-trained (and then fine-tuned) neural architectures.