2 resultados para Nanostructured Au substrate
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Oxygen Reduction Reaction (ORR) requires a platinum-based catalyst to reduce the activation barrier. One of the most promising materials as alternative catalysts are carbon-based, graphene and carbon nanotubes (CNT) derivatives. ORR on a carbon-based substrate involves the less efficient two electrons process and the optimal four electrons process. New synthetic strategies to produce tunable graphene-based materials utilizing graphene oxide (GO) as a base inspired the first part of this work. Hydrogen Evolution Reaction (HER) is a slow process requiring also platinum or palladium as catalyst. In the second part of this work, we develop and use a technique for Ni nanoparticles electrodeposition using NiCl2 as precursor in the presence of ascorbate ligands. Electrodeposition of nano-nickel onto flat glassy carbon (GC) and onto nitrogen-doped reduced graphene oxide (rGO-N) substrates are studied. State of the art catalysts for CO2RR requires rare metals rhenium or rhodium. In recent years significant research has been done on non-noble metals and molecular systems to use as electro and photo-catalysts (artificial photosynthesis). As Cu-Zn alloys show good CO2RR performance, here we applied the same nanoparticle electrosynthesis technique using as precursors CuCl2 and Cl2Zn and observed successful formation of the nanoparticles and a notable activity in presence of CO2. Using rhenium complexes as catalysts is another popular approach and di-nuclear complexes have a positive cooperative effect. More recently a growing family of pre-catalysts based on the earth-abundant metal manganese, has emerged as a promising, cheaper alternative. Here we study the cooperative effects of di-nuclear manganese complexes derivatives when used as homogeneous electrocatalysts, as well as a rhenium functionalized polymer used as heterogeneous electrocatalyst.
Resumo:
Interfacing materials with different intrinsic chemical-physical characteristics allows for the generation of a new system with multifunctional features. Here, this original concept is implemented for tailoring the functional properties of bi-dimensional black phosphorus (2D bP or phosphorene) and organic light-emitting transistors (OLETs). Phosphorene is highly reactive under atmospheric conditions and its small-area/lab-scale deposition techniques have hampered the introduction of this material in real-world applications so far. The protection of 2D bP against the oxygen by means of functionalization with alkane molecules and pyrene derivatives, showed long-term stability with respect to the bare 2D bP by avoiding remarkable oxidation up to 6 months, paving the way towards ultra-sensitive oxygen chemo-sensors. A new approach of deposition-precipitation heterogeneous reaction was developed to decorate 2D bP with Au nanoparticles (NP)s, obtaining a “stabilizer-free” that may broaden the possible applications of the 2D bP/Au NPs interface in catalysis and biodiagnostics. Finally, 2D bP was deposited by electrospray technique, obtaining oxidized-phosphorous flakes as wide as hundreds of µm2 and providing for the first time a phosphorous-based bidimensional system responsive to electromechanical stimuli. The second part of the thesis focuses on the study of organic heterostructures in ambipolar OLET devices, intriguing optoelectronic devices that couple the micro-scaled light-emission with electrical switching. Initially, an ambipolar single-layer OLET based on a multifunctional organic semiconductor, is presented. The bias-depending light-emission shifted within the transistor channel, as expected in well-balanced ambipolar OLETs. However, the emitted optical power of the single layer-based device was unsatisfactory. To improve optoelectronic performance of the device, a multilayer organic architecture based on hole-transporting semiconductor, emissive donor-acceptor blend and electron-transporting semiconductor was optimized. We showed that the introduction of a suitable electron-injecting layer at the interface between the electron-transporting and light-emission layers may enable a ≈ 2× improvement of efficiency at reduced applied bias.