3 resultados para Nanocatalysis, in-situ FTIR, fuel cells

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High serum levels of Interleukin-6 (IL-6) correlate with poor outcome in breast cancer patients. However no data are available on the relationship between IL-6 and stem/progenitor cells which may fuel the genesis of breast cancer in vivo. Herein, we address this issue in mammospheres (MS), multi-cellular structures enriched in stem/progenitor cells of the mammary gland, and also in MCF-7 breast cancer cells. We show that MS from node invasive breast carcinoma tissues express IL-6 mRNA at higher levels than MS from matched non-neoplastic mammary glands. We find that IL-6 mRNA is detectable only in basal-like breast carcinoma tissues, an aggressive variant showing stem cell features. Our results reveal that IL-6 triggers a Notch-3-dependent up-regulation of the Notch ligand Jagged-1, whose interaction with Notch-3 promotes the growth of MS and MCF-7 derived spheroids. Moreover, IL-6 induces a Notch-3-dependent up-regulation of the carbonic anhydrase IX gene, which promotes a hypoxia-resistant/invasive phenotype in MCF-7 cells and MS. Finally, an autocrine IL-6 loop relies upon Notch-3 activity to sustain the aggressive features of MCF-7-derived hypoxia-selected cells. In conclusion, our data support the hypothesis that IL-6 induces malignant features in Notch-3 expressing, stem/progenitor cells from human ductal breast carcinoma and normal mammary gland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic electronics has grown enormously during the last decades driven by the encouraging results and the potentiality of these materials for allowing innovative applications, such as flexible-large-area displays, low-cost printable circuits, plastic solar cells and lab-on-a-chip devices. Moreover, their possible field of applications reaches from medicine, biotechnology, process control and environmental monitoring to defense and security requirements. However, a large number of questions regarding the mechanism of device operation remain unanswered. Along the most significant is the charge carrier transport in organic semiconductors, which is not yet well understood. Other example is the correlation between the morphology and the electrical response. Even if it is recognized that growth mode plays a crucial role into the performance of devices, it has not been exhaustively investigated. The main goal of this thesis was the finding of a correlation between growth modes, electrical properties and morphology in organic thin-film transistors (OTFTs). In order to study the thickness dependence of electrical performance in organic ultra-thin-film transistors, we have designed and developed a home-built experimental setup for performing real-time electrical monitoring and post-growth in situ electrical characterization techniques. We have grown pentacene TFTs under high vacuum conditions, varying systematically the deposition rate at a fixed room temperature. The drain source current IDS and the gate source current IGS were monitored in real-time; while a complete post-growth in situ electrical characterization was carried out. At the end, an ex situ morphological investigation was performed by using the atomic force microscope (AFM). In this work, we present the correlation for pentacene TFTs between growth conditions, Debye length and morphology (through the correlation length parameter). We have demonstrated that there is a layered charge carriers distribution, which is strongly dependent of the growth mode (i.e. rate deposition for a fixed temperature), leading to a variation of the conduction channel from 2 to 7 monolayers (MLs). We conciliate earlier reported results that were apparently contradictory. Our results made evident the necessity of reconsidering the concept of Debye length in a layered low-dimensional device. Additionally, we introduce by the first time a breakthrough technique. This technique makes evident the percolation of the first MLs on pentacene TFTs by monitoring the IGS in real-time, correlating morphological phenomena with the device electrical response. The present thesis is organized in the following five chapters. Chapter 1 makes an introduction to the organic electronics, illustrating the operation principle of TFTs. Chapter 2 presents the organic growth from theoretical and experimental points of view. The second part of this chapter presents the electrical characterization of OTFTs and the typical performance of pentacene devices is shown. In addition, we introduce a correcting technique for the reconstruction of measurements hampered by leakage current. In chapter 3, we describe in details the design and operation of our innovative home-built experimental setup for performing real-time and in situ electrical measurements. Some preliminary results and the breakthrough technique for correlating morphological and electrical changes are presented. Chapter 4 meets the most important results obtained in real-time and in situ conditions, which correlate growth conditions, electrical properties and morphology of pentacene TFTs. In chapter 5 we describe applicative experiments where the electrical performance of pentacene TFTs has been investigated in ambient conditions, in contact to water or aqueous solutions and, finally, in the detection of DNA concentration as label-free sensor, within the biosensing framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrocatalysts play a significant role in the processes of electrochemical energy conversion. This thesis focuses on the preparation of carbon-supported nanomaterials and their application as electrocatalysts for alkaline water electrocatalysis and fuel cell. A general synthetic route was developed, i.e., species intercalate into carbon layers of graphite forming graphite intercalation compound, followed by dispersion producing graphenide solution, which then as reduction agent reacts with different metal sources generating the final materials. The first metal precursor used was non-noble metal iron salt, which generated iron (oxide) nanoparticles finely dispersed on carbon layers in the final composite materials. Meanwhile, graphite starting materials differing in carbon layer size were utilized, which would diversify corresponding graphenide solutions, and further produce various nanomaterials. The characterization results showed that iron (oxide) nanoparticles varying in size were obtained, and the size was determined by the starting graphite material. It was found that they were electrocatalytically active for oxygen reactions. In particular, the one with small iron (oxide) nanoparticles showed excellent electrocatalytic activity for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Afterwards, the metal precursor was tuned from non-noble metal salt to noble metal salt. It was confirmed that carbon-supported Rh, Pt, and RhPt (oxide) nanoparticle composite materials were also successfully obtained from the reaction between graphenide solution and corresponding noble metal precursor. The electrochemical measurements showed that the prepared noble metal-based nanomaterials were quite effective for hydrogen evolution reaction (HER) electrocatalysis, and the Rh sample could also display excellent electrocatalytic property towards OER. Moreover, by this synthetic approach carbon-supported noble metal Pt and non-noble metal nickel (Ni) composite material was also prepared. Therefore, the utilization efficiency of noble metal could be improved. The prepared NiPt sample displayed a property close to benchmark HER electrocatalyst.