3 resultados para NYLON-66

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Composite laminates present important advantages compared to conventional monolithic materials, mainly because for equal stiffness and strength they have a weight up to four times lower. However, due to their ply-by-ply nature, they are susceptible to delamination, whose propagation can bring the structure to a rapid catastrophic failure. In this thesis, in order to increase the service life of composite materials, two different approaches were explored: increase the intrinsic resistance of the material or confer to them the capability of self-repair. The delamination has been hindered through interleaving the composite laminates with polymeric nanofibers, which completed the hierarchical reinforcement scale of the composite. The manufacturing process for the integration of the nanofibrous mat in the laminate was optimized, resulting in an enhancement of mode I fracture toughness up to 250%. The effect of the geometrical dimensions of the nano-reinforcement on the architecture of the micro one (UD and woven laminates) was studied on mode I and II. Moreover, different polymeric materials were employed as nanofibrous reinforcement (Nylon 66 and polyvinylidene fluoride). The nano toughening mechanism was studied by micrograph analysis of the crack path and SEM analysis of the fracture surface. The fatigue behavior to the onset of the delamination and the crack growth rate for woven laminates interleaved with Nylon 66 nanofibers was investigated. Furthermore, the impact behavior of GLARE aluminum-glass epoxy laminates, toughened with Nylon 66 nanofibers was investigated. Finally, the possibility of confer to the composite material the capability of self-repair was explored. An extrinsic self-healing-system, based on core-shell nanofibers filled with a two-component epoxy system, was developed by co-electrospinning technique. The healing potential of the nano vascular system has been proved by microscope electron observation of the healing agent release as result of the vessels rupture and the crosslinking reaction was verified by thermal analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon Fiber Reinforced Polymers (CFRPs) display high specific mechanical properties, allowing the creation of lightweight components and products by metals replacement. To reach outstanding mechanical performances, the use of stiff thermoset matrices, like epoxy, is preferred. Laminated composites are commonly used for their ease of manipulation during object manufacturing. However, the natural anisotropic structure of laminates makes them vulnerable toward delamination. Moreover, epoxy-based CFRPs are very stiff materials, thus showing low damping capacity, which results in unwanted vibrations and structure-borne noise that may contribute to delamination triggering. Hence, searching for systems able to limit these drawbacks is of primary importance for safety reasons, as well as for economic ones. In this experimental thesis, the production and integration of innovative rubbery nanofibrous mats into CFRP laminates are presented. A smart approach, based on single-needle electrospinning of rubber-containing blends, is proposed for producing dimensionally stable rubbery nanofibers without the need for rubber crosslinking. Nano-modified laminates aim at obtaining structural composites with improved delamination resistance and enhanced damping capacity, without significantly lowering other relevant mechanical properties. The possibility of producing nanofibers nano-reinforced with graphene to be applied for reinforcing composite laminates is also investigated. Moreover, the use of piezoelectric nanofibrous mats in hybrid composite laminates for achieving self-sensing capability is presented too as a different approach to prevent the catastrophic consequences of possible structural laminate failure. Finally, an accurate, systematic, and critical study concerning tensile testing of nonwovens, using electrospun Nylon 66 random nanofibrous mats as a case study, is proposed. Nanofibers diameter and specimen geometry were investigated to thoroughly describe the nanomat tensile behaviour, also considering the polymer thermal properties, and the number of nanofibers crossings as a function of the nanofibers diameter. Stress-strain data were also analysed using a phenomenological data fitting model to interpret the tensile behaviour better.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon Fiber Reinforced Polymers (CFRPs) are well renowned for their excellent mechanical properties, superior strength-to-weight characteristics, low thermal expansion coefficient, and fatigue resistance over any conventional polymer or metal. Due to the high stiffness of carbon fibers and thermosetting matrix, CFRP laminates may display some drawbacks, limiting their use in specific applications. Indeed, the overall laminate stiffness may lead to structural problems arising from their laminar structure, which makes them susceptible to structural failure by delamination. Moreover, such stiffness given by the constituents makes them poor at damping vibration, making the component more sensitive to noise and leading, at times, to delamination triggering. Nanofibrous mat interleaving is a smart way to increase the interlaminar fracture toughness: the use of thermoplastic polymers, such as poly(ε- caprolactone) (PCL) and polyamides (Nylons), as nonwovens are common and well established. Here, in this PhD thesis, a new method for the production of rubber-rich nanofibrous mats is presented. The use of rubbery nanofibers blended with PCL, widely reported in the literature, was used as matrix tougheners, processing DCB test results by evaluating Acoustic Emissions (AE). Moreover, water-soluble electrospun polyethylene oxide (PEO) nanofibers were proposed as an innovative method for reinforcing layers and hindering delamination in epoxy-based CFRP laminates. A nano-modified CFRP was then aged in water for 1 month and its delamination behaviour compared with the ones of the commercial laminate. A comprehensive study on the use of nanofibers with high rubber content, blended with a crystalline counterpart, as enhancers of the interlaminar properties were then investigated. Finally, PEO, PCL, and Nylon 66 nanofibers, plain or reinforced with Graphene (G), were integrated into epoxy-matrix CFRP to evaluate the effect of polymers and polymers + G on the laminate mechanical properties.