10 resultados para NUTRITIONAL SUPLEMENTS
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Mycotoxins are contaminants of agricultural products both in the field and during storage and can enter the food chain through contaminated cereals and foods (milk, meat, and eggs) obtained from animals fed mycotoxin contaminated feeds. Mycotoxins are genotoxic carcinogens that cause health and economic problems. Ochratoxin A and fumonisin B1 have been classified by the International Agency for Research on Cancer in 1993, as “possibly carcinogenic to humans” (class 2B). To control mycotoxins induced damages, different strategies have been developed to reduce the growth of mycotoxigenic fungi as well as to decontaminate and/or detoxify mycotoxin contaminated foods and animal feeds. Critical points, target for these strategies, are: prevention of mycotoxin contamination, detoxification of mycotoxins already present in food and feed, inhibition of mycotoxin absorption in the gastrointestinal tract, reduce mycotoxin induced damages when absorption occurs. Decontamination processes, as indicate by FAO, needs the following requisites to reduce toxic and economic impact of mycotoxins: it must destroy, inactivate, or remove mycotoxins; it must not produce or leave toxic and/or carcinogenic/mutagenic residues in the final products or in food products obtained from animals fed decontaminated feed; it must be capable of destroying fungal spores and mycelium in order to avoiding mycotoxin formation under favorable conditions; it should not adversely affect desirable physical and sensory properties of the feedstuff; it has to be technically and economically feasible. One important approach to the prevention of mycotoxicosis in livestock is the addition in the diets of the non-nutritionally adsorbents that bind mycotoxins preventing the absorption in the gastrointestinal tract. Activated carbons, hydrated sodium calcium aluminosilicate (HSCAS), zeolites, bentonites, and certain clays, are the most studied adsorbent and they possess a high affinity for mycotoxins. In recent years, there has been increasing interest on the hypothesis that the absorption in consumed food can be inhibited by microorganisms in the gastrointestinal tract. Numerous investigators showed that some dairy strains of LAB and bifidobacteria were able to bind aflatoxins effectively. There is a strong need for prevention of the mycotoxin-induced damages once the toxin is ingested. Nutritional approaches, such as supplementation of nutrients, food components, or additives with protective effects against mycotoxin toxicity are assuming increasing interest. Since mycotoxins have been known to produce damages by increasing oxidative stress, the protective properties of antioxidant substances have been extensively investigated. Purpose of the present study was to investigate in vitro and in vivo, strategies to counteract mycotoxin threat particularly in swine husbandry. The Ussing chambers technique was applied in the present study that for the first time to investigate in vitro the permeability of OTA and FB1 through rat intestinal mucosa. Results showed that OTA and FB1 were not absorbed from rat small intestine mucosa. Since in vivo absorption of both mycotoxins normally occurs, it is evident that in these experimental conditions Ussing diffusion chambers were not able to assess the intestinal permeability of OTA and FB1. A large number of LAB strains isolated from feces and different gastrointestinal tract regions of pigs and poultry were screened for their ability to remove OTA, FB1, and DON from bacterial medium. Results of this in vitro study showed low efficacy of isolated LAB strains to reduce OTA, FB1, and DON from bacterial medium. An in vivo trial in rats was performed to evaluate the effects of in-feed supplementation of a LAB strain, Pediococcus pentosaceus FBB61, to counteract the toxic effects induced by exposure to OTA contaminated diets. The study allows to conclude that feed supplementation with P. pentosaceus FBB61 ameliorates the oxidative status in liver, and lowers OTA induced oxidative damage in liver and kidney if diet was contaminated by OTA. This P. pentosaceus FBB61 feature joined to its bactericidal activity against Gram positive bacteria and its ability to modulate gut microflora balance in pigs, encourage additional in vivo experiments in order to better understand the potential role of P. pentosaceus FBB61 as probiotic for farm animals and humans. In the present study, in vivo trial on weaned piglets fed FB1 allow to conclude that feeding of 7.32 ppm of FB1 for 6 weeks did not impair growth performance. Deoxynivalenol contamination of feeds was evaluated in an in vivo trial on weaned piglets. The comparison between growth parameters of piglets fed DON contaminated diet and contaminated diet supplemented with the commercial product did not reach the significance level but piglet growth performances were numerically improved when the commercial product was added to DON contaminated diet. Further studies are needed to improve knowledge on mycotoxins intestinal absorption, mechanism for their detoxification in feeds and foods, and nutritional strategies to reduce mycotoxins induced damages in animals and humans. The multifactorial approach acting on each of the various steps could be a promising strategy to counteract mycotoxins damages.
Resumo:
Recently, the increasing interest in organic food products and environmental friendly practices has emphasized the importance of selecting crop varieties suitable for the low-input systems. Additionally, in recent years the relationship between diet and human health has gained much attention among consumers, favoring the investigations on food nutraceutical properties. Among cereals, wheat plays an important role in human nutrition around the world and contributes to the daily intake of essential nutrients such as starch and protein. Moreover, whole grain contains several bioactive compounds that confer to wheat-derived products unique nutraceutical properties (dietary fibre, antioxidants). The present research provided interesting insights for the selection of wheat genotypes suitable for low-input systems and the development of specific breeding programs dedicated to organic farming. The investigation involved 5 old not dwarf genotypes (Andriolo, Frassineto, Gentil rosso, Inallettabile, Verna) and 1 modern dwarf variety (Palesio), grown under biodynamic management, over two consecutive growing seasons (2009/2010, 2010/2011). Results evidenced that under low-input farming some investigated old wheat genotypes (Frassineto, Inallettabile) were comparable to the modern cultivar in terms of whole agronomic performance. As regards the nutritional and nutraceutical properties, some old genotypes (Andriolo, Gentil rosso, Verna) emerged for their relevant content of several investigated phytochemicals (such as insoluble dietary fibre, polyphenols, flavonoids, in vitro antioxidant activity) and nutrients (protein, lipid, minerals). Despite of the low technological features, the six wheat varieties grown under low-input management may efficiently provide raw material for the preparation of traditionally processed bread with valuable sensory and nutritional properties. Results highlighted that old wheat varieties have peculiar phytochemical composition and may be a valuable source of nutraceutical compounds. Some of the genetic material involved in the present study may be used in breeding programs aimed at selecting varieties suitable for low-input farming and rich in health-promoting compounds.
Resumo:
The overall objective of this PhD was to investigate the possibility to increase the nutritional value of confectionary products by the use of natural ingredients with healthy functions. The first part of the thesis focused on the possible substitution of the most characteristic component of confectionary products, i.e. refined sugar. Many natural whole sweetening alternatives are available, though not widely used; the use of molasses, the byproduct of sugar beet and cane production, still rich in healthy components as minerals and phytochemicals is hereby discussed; after having verified molasses effectiveness in oxidative stress counteraction on liver cultured cells, the higher antioxidant capacity of a sweet food prepared with molasses instead of refined sugar was confirmed. A second step of the project dealt with another main ingredient of various sweet products, namely wheat. Particularly, the exploitation of soft and durum wheat byproducts could be another sustainable strategy to improve the healthy value of confectionery. The isolation of oligosaccharides with bioactive functions form different fractions of the wheat milling stream was studied and the new ingredients were shown to have a high dietary fiber and antioxidants content. As valid alternative, product developers should consider the appealing and healthy addition of ancient grains flour to sweet baked goods. The possibility of substituting the modern whole durum wheat with the ancient Kamut® khorasan was considered, and the antioxidant and anti-inflammatory effects of these grains were evaluated and compared both in vitro and in vivo on rats. Finally, since high consumption of confectionery is a risk factor for obesity, a possible strategy for the counteraction of this disease was investigated. The ability of three bioactives in inhibiting adipocytes differentiation was investigated. In fact, theoretically, compounds able to influence adipogenesis could be used in the formulation of functional sweet products and contribute to prevent obesity.
Resumo:
Intestinal health is essential for the health of the body since the gastro-intestinal mucosa is the main site of interaction with the external environment, as well as the major area colonized by the microbiota. Intestinal health relies on proper barrier function, epithelial integrity and related mechanisms of protection (mucous layer, tight junctions, immune and inflammatory system). In pigs, during the weaning transition, intestinal inflammation and barrier integrity play a crucial role in regulating intestinal health and, consequently, pig’s health, growth and productivity. The aim of the project was to assess the impact of different nutritional strategies on the intestinal health of weaning piglets with reference to the inflammatory status and epithelial integrity. Therefore, in vivo trials were conducted to test the in-feed supplementation with zinc, tributyrin, or organic acids and nature-identical compounds (NIC) to weaning piglets. All the dietary interventions positively impacted the intestinal inflammatory status and, as a consequence, improved epithelial integrity by modulating tight junctions proteins (zinc or tributyrin) or by enhancing barrier properties measured with Ussing chambers (organic acids and NIC). These findings highlight that intestinal inflammation and barrier function are strictly linked, and that the control of inflammation is essential for adequate barrier function. In addition, in zinc trial and organic acids and NIC trial, better intestinal health could successfully result in better growth performance, as aimed for pig production improvement. To conclude, this work shows that dietary supplementation with bio-active substances such as zinc, tributyrin or organic acids and NIC may improve intestinal health of weaning piglets modulating intestinal inflammatory stress and barrier integrity and allowing better piglet’s health, growth and productivity.
Resumo:
Biochar is the solid C-rich matrix obtained by pyrolysis of biomasses, currently promoted as a soil amendment with the aim to offset anthropogenic C emissions, while ameliorating soil properties and growth conditions. Benefits from biochar seem promising, although scientific understandings are beginning to be explored. In this project, I performed a suite of experiments in controlled and in field conditions with the aims to investigate the effect of biochar on: a) the interaction with minerals; b) Fe nutrition in kiwifruit; c) soil leaching, soil fertility, soil CO2 emissions partitioning, soil bacterial profile and key gene expression of soil nitrification-involved bacteria; d) plant growth, nutritional status, yield, fruit quality and e) its physical-chemical changes as affected by long-term environmental exposure. Biochar released K, P and Mg but retained Fe, Mn, Cu and Zn on its surface which in turn hindered Fe nutrition of kiwifruit trees. A redox reaction on the biochar surface exposed to a Fe source was elucidated. Biochar reduced the amount of leached NH4+-N but increased that of Hg, K, P, Mo, Se and Sn. Furthermore, biochar synergistically interacted with compost increasing soil field capacity, fertility, leaching of DOC, TDN and RSOC, suggesting a priming effect. However, in field conditions, biochar did not affect yield, nutritional status and fruit quality. Actinomadura flavalba, Saccharomonospora viridis, Thermosporomyces composti and Enterobacter spp. were peculiar of the soil amended with biochar plus compost which exhibited the highest band richness and promoted gene expression levels of Nitrosomonas spp., Nitrobacter spp. and enzymatic-related activity. Environmental exposure reduced C, K, pH and water infiltration of biochar which instead resulted in a higher O, Si, N, Na, Al, Ca, Mn and Fe at%. Oxidation occurred on the aged biochar surface, it decreased progressively with depth and induced the development of O-containing functional groups, up to 75nm depth.
Resumo:
Cured meats and dairy products are criticized for their salt content and synthetic additives. This has led to the development of strategies to reduce and replace these ingredients. Since the food matrix and technological processes can affect the bioaccessibility of nutrients, it is necessary to study their release during digestion to determine the real nutritional value of foods. In the first part of this PhD project, the impact on the nutritional quality of the reduction of sodium content and of the replacement of synthetic nitrates/nitrites with a combination of innovative formulations was evaluated in Parmigiano Reggiano Cheese and salami. For this purpose, an in vitro digestion model combined with different analytical techniques was used. The results showed that fatty acids and proteins release increased over time during digestion. At the end of digestion, the innovative formulation/processing did not negatively affect fatty acids release and protein hydrolysis, and led to the formation of bioactive peptides. The excessive intake of sugars is correlated with metabolic diseases. After the intestinal uptake, their release in the blood stream depends on their metabolic fate within the enterocyte. In the second part of this PhD project, the absorption and metabolism of glucose, fructose and sucrose was evaluated using intestinal cell line. A faster absorption of fructose than glucose was observed, and a different modulation of the synthesis/transport of other metabolites by monosaccharides was shown. Intestinal cells were also used to verify the stability and intestinal uptake of vitamins (A and D3) delivered to cells through two vehicles. It was shown that the presence of lipids protected the vitamin from external factors such as light, heat and oxygen, and improved their bioavailability Overall, the results obtained in this PhD project confirmed that considering only the chemical composition of foods is not sufficient to determine their nutritional value.
Resumo:
This PhD project aimed to (i) investigate the effects of three nutritional strategies (supplementation of a synbiotic, a muramidase, or arginine) on growth performance, gut health, and metabolism of broilers fed without antibiotics under thermoneutral and heat stress conditions and to (ii) explore the impacts of heat stress on hypothalamic regulation of feed intake in three broiler lines from diverse stages of genetic selection and in the red jungle fowl, the ancestor of domestic chickens. Synbiotic improved feed efficiency and footpad health, increased Firmicutes and reduced Bacteroidetes in the ceca of birds kept in thermoneutral conditions, while did not mitigate the impacts of heat stress on growth performance. Under optimal thermal conditions, muramidase increased final body weight and reduced cumulative feed intake and feed conversion ratio in a dose-dependent way. The highest dose reduced the risk of footpad lesions, cecal alpha diversity, the Firmicutes to Bacteroidetes ratio, and butyrate producers, increased Bacteroidaceae and Lactobacillaceae, plasmatic levels of bioenergetic metabolites, and reduced the levels of pro-oxidant metabolites. The same dose, however, failed to reduce the effects of heat stress on growth performance. Arginine supplementation improved growth rate, final body weight, and feed efficiency, increased plasmatic levels of arginine and creatine and hepatic levels of creatine and essential amino acids, reduced alpha diversity, Firmicutes, and Proteobacteria (especially Escherichia coli), and increased Bacteroidetes and Lactobacillus salivarius in the ceca of thermoneutral birds. No arginine-mediated attenuation of heat stress was found. Heat stress altered protein metabolism and caused the accumulation of antioxidant and protective molecules in oxidative stress-sensitive tissues. Arginine supplementation, however, may have partially counterbalanced the effects of heat stress on energy homeostasis. Stable gene expression of (an)orexigenic neuropeptides was found in the four chicken populations studied, but responses to hypoxia and heat stress appeared to be related to feed intake regulation.
Resumo:
Physiological and environmental stressors can disrupt barrier integrity at epithelial interfaces (e.g., uterine, mammary, intestinal, and lung), which are constantly exposed to pathogens that can lead to the activation of the immune system. Unresolved inflammation can result in the emergence of metabolic and infectious diseases. Maintaining cow health and performance during periods of immune activation such as in the peripartum or under heat stress represents a significant obstacle to the dairy industry. Feeding microencapsulated organic acids and pure botanicals (OAPB) has shown to improve intestinal health in monogastric species and prevent systemic inflammation via the gut-liver axis. Feeding unsaturated fatty acids (FA) such as oleic acid (OA) and very-long-chain omega-3 (VLC n-3) FA are of interest in dairy cow nutrition because of their potential to improve health, fertility, and milk production. In the first study, we evaluated the effects of heat stress (HS) conditions and dietary OAPB supplementation on gut permeability and milk production. In parallel with an improved milk performance and N metabolism, cows supplemented with OAPB also had an enhanced hepatic methyl donor status and greater inflammatory and oxidative stress status compared to the HS control group. In a second study, we evaluated the relative bioavailability of VLC n-3 in cows fed a bolus of rumen-protected (RP) fish oil (FO). In a third study, we proved the interaction between RPFO and RP choline to promote the synthesis of phosphatydilcholines. Lipid forms that support hepatic triglyceride export and can prevent steatosis in dairy cows. The last study, demonstrated that algae oil outperforms against a toxin challenge compared to FO and that feeding RPOA modulates energy partitioning relative to n-3 FA-containing oils. Overall, this thesis confirms the need and the effectiveness of different strategies that aimed to improve dairy cows’ health and performance under heat stress, inflammation or metabolic disease.
Resumo:
Agriculture market instability impedes achieving the global goal of sustainable and resilient food systems. Currently, the support to producers reaches the mammoth USD 540 billion a year and is projected to reach USD 1.8 trillion by 2030. This gigantic increase requires a repurposing agricultural support strategy (RASS), considering the market country-specific circumstances. These circumstances may vary with geographic locations, marketing structures, and product value chains. The fruit production system is crucial for health-conscious consumers and profit-oriented producers for food and nutritional security. Export is one of the main driving forces behind the expansion of the fruit sector, and during the year 2010-2018, trade significantly outpaced production increases. The previous literature states that irregular and unpredictable behaviour — Chaos — can arise from entirely rational economic decision-making within markets. Different markets' direct/indirect linkages through trade create trade hubs, and uncertainty may function as an avenue to transmit adverse shocks and increase vulnerability rather than contribute to resilience. Therefore, distinguishing Chaos into an endogenous and exogenous pattern of behaviour is cradled to formulate an effective RASS for resilient food systems and to understand global food crises. The present research is aimed at studying the market dynamics of three regional trade hubs, i.e., Brazil (South America), Italy (Europe), and Pakistan (Asia), each representing advanced to traditional value chains to control uncertainty (risks). The present research encompasses 1) a systematic review to highlight the research dynamism and identify grey-areas of research. Based on the findings, we have investigated the 2) nonlinear impacts of climate-induced price responsiveness in monopsony markets. Once we highlighted the importance of marketing structures/arrangements, 3) we developed a risk transmission framework to address the co-evolving impacts in complex dynamic interactions.