6 resultados para NK-KappaB
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Background: Several lines of evidence showed that inflammation is associated with changes in the expression of tachykinins both in human and animal models. Tachykinins, including substance P (SP), are small peptides expressed in the extrinsic primary afferent nerve fibres and enteric neurons of the gut: they exert their action through three distinct receptors, termed NK1, NK2 and NK3. SP modulates intestinal motility and enteric secretion, acting preferentially through the NK1 receptor. SP neural network and NK1 receptor expression are increased in patients with inflammatory bowel disease, and similar changes were observed in experimental models of inflammation. The 2,4 Dinitrobenzene Sulphonic Acid (DNBS) model of colitis is useful to study innate immunity, non-specific inflammation and wound healing; it has been suggested that the transmural inflammation seen in this model resembles that found in Crohns disease and can therefore be used to study what cells and mediators are involved in this type of inflammation. Aim: To test the possible protective effect of the NK1 receptor antagonist SSR140333 on: 1) acute model of intestinal inflammation; 2) reactivation of DNBS-induced colitis in rats. Methods: Acute colitis was induced in male SD rats by intrarectal administration of DNBS (15 mg/rat in 50% ethanol). Reactivation of colitis was induced by intrarectal injections of DNBS on day 28 (7.5 mg/rat in 35% ethanol). Animals were sacrificed on day 6 (acute colitis) and 29 (reactivation of colitis). SSR140333 (10 mg/kg) was administered orally starting from the day before the induction of colitis for 7 days (acute colitis) or seven days before the reactivation of colitis. Colonic damage was assessed by means of macroscopic and microscopic scores, myeloperoxidase activity (MPO) and TNF-α tissue levels. Enzyme immunoassay was used to measure colonic substance P levels. Statistical analysis was performed using analysis of variance (one-way or two-way, as appropriate) with the Bonferronis correction for multiple comparisons. Results: DNBS administration impaired body weight gain and markedly increased all inflammatory parameters (p<0.01). Treatment with SSR140333 10 mg/kg significantly counteracted the impairment in body weight gain, decreased macroscopic and histological scores and reduced colonic myeloperoxidase activity (p<0.01). Drug treatment counteracted TNF-α tissue levels and colonic SP concentrations (acute model). Similar results were obtained administering the NK1 receptor antagonist SSR140333 (3 and 10 mg/kg) for 5 days, starting the day after the induction of colitis. Intrarectal administration of DNBS four weeks after the first DNBS administration resulted in reactivation of colitis, with increases in macroscopic and histological damage scores and increase in MPO activity. Preventive treatment with SSR140333 10 mg/kg decreased macroscopic damage score, significantly reduced microscopic damage score but did not affect MPO activity. Conclusions: Treatment with SSR140333 significantly reduced intestinal damage in acute model of intestinal inflammation in rats. The NK1 receptor antagonist SSR140333 was also able to prevent relapse in experimental colitis. These results support the hypothesis of SP involvement in intestinal inflammation and indicate that NK receptor antagonists may have a therapeutic potential in inflammatory bowel disease.
Resumo:
The effector function of natural killer (NK) cells is regulated by activating and inhibitory receptors, termed killer immunoglobulin-like receptors (KIRs). In haploidentical T-cell depleted transplantation the donor/recipient KIR mismatch significantly impacts on NK-mediated tumor cell killing, particularly in acute myeloid leukaemia (AML). Thirty-four high risk AML patients entered a phase I-II study of adoptive NK-cell based immunotherapy and were screened for the availability of one haploidentical KIR ligand mismatched donor. Thirteen of them resulted as having one suitable donor. NK cells were enriched from steady-state leukaphereses by using a double-step immunomagnetic separation system, consisting in depletion of CD3+ T cells followed by positive selection of CD56+ NK cells. CD56+ cells were enriched from 7,70% (1,26-11,70) to 93,50% (66,41-99,20) (median recovery 53,05% (30,97-72,85), median T-depletion 3,03 log (2,15-4,52) viability >92%) and their citotoxic activity was inalterate. All patients (4 progressions, 1 partial remission and 8 complete remissions) received NK cell infusion which was preceeded by immunosuppressive chemotherapy (fludarabine and cyclophosphamide) and followed by interleukin 2 injections. The median number of reinfused NK cells was 2,74x10(e)6/kg(1,11-5,00) and contamining CD3+ T cells were always less than 1x10(e)5/kg. The procedure was well-tolerated and no significant toxicity, including GvHD, related to NK cell infusion was observed. The donor NK cells were demonstrated in 5/10 patients. Among the 8 patients in complete remission 5 patients are stable after 18, 15, 4, 2 months of follow-up. Three other patients relapsed after 2 and 7 months. The patient in partial remission obtained a complete remission, which lasted for 6 months. The 4 patients with active/progressive disease showed the persistence of disease. This clinical observation may be correlated with in vitro studies, indicating that AML cells are capable to induce NK cell apoptosis in a dose-depend manner. In summery, a two-step enrichment of CD56+ NK cells allows the collection of a suitable number of target cells to be used as adoptive immunotherapy in AML patients. Infusion of NK cells is feasible and safe and adoptively transferred NK cells can be detected after infusion.
Resumo:
Molecular profiling of Peripheral T-cell lymphomas not otherwise specified Peripheral T-cell lymphomas (PTCLs) are a heterogeneous group of tumors that the WHO classification basically subdivides into specified and not otherwise specified (NOS). In Western countries, they represent around 12% of all non-Hodgkin's lymphomas. In particular, PTCL/NOS is the commonest subtype, corresponding to about 60-70% of all T-cell lymphomas. However, it remains a complex entity showing great variety regarding either morphology, immunophenotype or clinical behavior. Specially, the molecular pathology of these tumors is still poorly known. In fact, many alteration were found, but no single genes were demonstrated to have a pathogenetic role. Recently, gene expression profiling (GEP) allowed the identification of PTCL/NOS-associated molecular signatures, leading to better understanding of their histogenesis, pathogenesis and prognostication. Interestingly, proliferation pathways are commonly altered in PTCLs, being highly proliferative cases characterized by poorer prognosis. In this study, we aimed to investigate the possible role in PTCL/NOS pathogenesis of selected molecules, known to be relevant for proliferation control. In particular, we analyzed the cell cycle regulators PTEN and CDKN1B/p27, the NF-kB pathway, and the tyrosin kinase PDGFR. First, we found that PTEN and p27 seem to be regulated in PTCL/NOS as in normal T-lymphocytes, as to what expression and cellular localization are concerned, and do not present structural abnormalities in the vast majority of PTCL/NOS. Secondly, NF-kB pathway appeared to be variably activated in PTCL/NOS. In particular, according to NF-kB gene expression levels, the tumors could be divided into two clusters (C1 and C2). Specially, C1 corresponded to cases presenting with a global down-regulation of the entire pathway, while C2 showed over-expression of genes involved in TNF signaling. Notably, by immunohistochemistry, we showed that either the canonical or the alternative NK-kB pathway were activated in around 40% of cases. Finally, we found PGDFRA to be consistently over-expressed (at mRNA and protein level) and activated in almost all PTCLs/NOS. Noteworthy, when investigating possible causes for PDGFRA deregulation, we had evidences that PDGFR over-expression is due to the absence of miR-152, which appeared to be responsible for PDGFRA silencing in normal T-cells. Furthermore, we could demonstrate that its aberrant activation is sustained by an autocrine loop. Importantly, this is the first case, to the best of our knowledge, of hematological tumor in which tyrosin kinase aberrant activity is determined by deregulated miRNA expression and autocrine loop activation. Taken together, our results provide novel insight in PTCL/NOS pathogenesis by opening new intriguing scenarios for innovative therapeutic interventions.
Resumo:
Animal models have been relevant to study the molecular mechanisms of cancer and to develop new antitumor agents. Anyway, the huge divergence in mouse and human evolution made difficult the translation of the gained achievements in preclinical mouse based studies. The generation of clinically relevant murine models requires their humanization both concerning the creation of transgenic models and the generation of humanized mice in which to engraft a functional human immune system, and reproduce the physiological effects and molecular mechanisms of growth and metastasization of human tumors. In particular, the availability of genotypically stable immunodepressed mice able to accept tumor injection and allow human tumor growth and metastasization would be important to develop anti-tumor and anti-metastatic strategies. Recently, Rag2-/-;gammac-/- mice, double knockout for genes involved in lymphocyte differentiation, had been developed (CIEA, Central Institute for Experimental Animals, Kawasaki, Japan). Studies of human sarcoma metastasization in Rag2-/-; gammac-/- mice (lacking B, T and NK functionality) revealed their high metastatic efficiency and allowed the expression of human metastatic phenotypes not detectable in the conventionally used nude murine model. In vitro analysis to investigate the molecular mechanisms involved in the specific pattern of human sarcomas metastasization revealed the importance of liver-produced growth and motility factors, in particular the insulin-like growth factors (IGFs). The involvement of this growth factor was then demonstrated in vivo through inhibition of IGF signalling pathway. Due to the high growth and metastatic propensity of tumor cells, Rag2-/-;gammac-/- mice were used as model to investigate the metastatic behavior of rhabdomyosarcoma cells engineered to improve the differentiation. It has been recently shown that this immunodeficient model can be reconstituted with a human immune system through the injection of human cord blood progenitor cells. The work illustrated in this thesis revealed that the injection of different human progenitor cells (CD34+ or CD133+) showed peculiar engraftment and differentiation abilities. Experiments of cell vaccination were performed to investigate the functionality of the engrafted human immune system and the induction of specific human immune responses. Results from such experiments will allow to collect informations about human immune responses activated during cell vaccination and to define the best reconstitution and experimental conditions to create a humanized model in which to study, in a preclinical setting, immunological antitumor strategies.
Resumo:
Kidney transplantation is the best treatment option for the restoration of excretory and endocrine kidney function in patients with end-stage renal disease. The success of the transplant is linked to the genetic compatibility between donor and recipient, and upon progress in surgery and immunosuppressive therapy. Numerous studies have established the importance of innate immunity in transplantation tolerance, in particular natural killer (NK) cells represent a population of cells involved in defense against infectious agents and tumor cells. NK cells express on their surface the Killer-cell Immunoglobulin-like Receptors (KIR) which, by recognizing and binding to MHC class I antigens, prevent the killing of autologous cells. In solid organ transplantation context, and in particular the kidney, recent studies show some correlation between the incompatibility KIR / HLA and outcome of transplantation so as to represent an interesting perspective, especially as regards setting of immunosuppressive therapy. The purpose of this study was therefore to assess whether the incompatibility between recipient KIR receptors and HLA class I ligands of the donor could be a useful predictor in order to improve the survival of the transplanted kidney and also to select patients who might benefit of a reduced regimen. One hundred and thirteen renal transplant patients from 1999 to 2005 were enrolled. Genomic DNA was extracted for each of them and their donors and genotyping of HLA A, B, C and 14 KIR genes was carried out. Data analysis was conducted on two case-control studies: one aimed at assessing the outcome of acute rejection and the other to assess the long term transplant outcome. The results showed that two genes, KIR2DS1 and KIR3DS1, are associated with the development of acute rejection (p = 0.02 and p = 0.05, respectively). The presence of the KIR2DS3 gene is associated with a better performance of serum creatinine and glomerular filtration rate (MDRD) over time (4 and 5 years after transplantation, p <0.05), while in the presence of ligand, the serum creatinine and MDRD trend seems to get worse in the long term. The analysis performed on the population, according to whether there was deterioration of renal function or not in the long term, showed that the absence of the KIR2DL1 gene is strongly associated with an increase of 20% of the creatinine value at 5 years, with a relative risk to having a greater creatinine level than the median 5-year equal to 2.7 95% (95% CI: 1.7788 - 2.6631). Finally, the presence of a kidney resulting negative for HLA-A3 / A11, compared to a positive result, in patients with KIR3DL2, showed a relative risk of having a serum creatinine above the median at 5 years after transplantation of 0.6609 (95% CI: 0.4529 -0.9643), suggesting a protective effect given to the absence of this ligand.
Resumo:
I linfomi primitivi cutanei riconosciuti nella classificazione della WHO/EORTC si presentano come “entità cliniche distinte” su base clinica, morfologica, immunofenotipica e molecolare. Il fenotipo linfocitario T helper CD4+ caratterizza i CTCL, ma alcune entità a prognosi aggressiva presentano un immunofenotipo citotossico CD8+. Numerosi studi di citogenetica (CGH) e gene-expression profiling (GEP) sono stati condotti negli ultimi anni sui CTCL e sono state riscontrate numerose aberrazioni cromosomiche correlate ai meccanismi di controllo del ciclo cellulare. Scopo del nostro studio è la valutazione delle alterazioni genomiche coinvolte nella tumorigenesi di alcuni CTCL aggressivi: il linfoma extranodale NK/T nasal-type, il linfoma primitivo cutaneo aggressivo epidermotropo (AECTCL) e il gruppo dei PTCL/NOS pleomorfo CD8+. Il materiale bioptico dei pazienti è stato sottoposto alla metodica dell’array-CGH per identificare le anomalie cromosomiche; in alcuni casi di AECTCL è stata applicata la GEP, che evidenzia il profilo di espressione genica delle cellule neoplastiche. I dati ottenuti sono stati valutati in modo statistico, evidenziando le alterazioni cromosomiche comuni significative di ogni entità. In CGH, sono state evidenziate alcune aberrazioni comuni fra le entità studiate, la delezione di 9p21.3, l’amplificazione di 17q, 19p13, 19q13.11-q13.32 , 12q13 e 16p13.3, che determinano la delezione dei geni CDKN2A e CDKN2B e l’attivazione del JAK/STAT signaling pathway. Altre alterazioni definiscono l’amplificazione di c-MYC (8q24) e CCND1/CDK4-6 (11q13). In particolare, sono state evidenziate numerose anomalie genomiche comuni in casi di AECTCL e PTCL/NOS pleomorfo. L’applicazione della GEP in 5 casi di AECTCL ha confermato l’alterata espressione dei geni CDKN2A, JAK3 e STAT6, che potrebbero avere un ruolo diretto nella linfomagenesi. Lo studio di un numero maggiore di casi in GEP e l’introduzione delle nuove indagini molecolari come l’analisi dei miRNA, della whole-exome e whole genome sequences consentiranno di evidenziare alterazioni molecolari correlate con la prognosi, definendo anche nuovi target terapeutici.