4 resultados para NEURAL PLASTICITY
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Synthetic torpor is a peculiar physiological condition resembling natural torpor, in which even non-hibernating species can be induced through different pharmacological approaches. The growing interest in the induction of a safe synthetic torpor state in non-hibernating species stems from the possible applications that it may have in a translational perspective. In particular, the deeper understanding of the functional changes occurring during and after synthetic torpor may lead to the standardization of a safe procedure to be used also in humans and to the implementation of new therapeutic strategies. Some of the most interesting and peculiar characteristics of torpor that should be assessed in synthetic torpor and may have a translational relevance are: the reversible hyperphosphorylation of neuronal Tau protein, the strong and extended neural plasticity, which may be related to Tau regulatory processes, and the development of radioresistance. In this respect, in the present thesis, rats were induced into synthetic torpor by the pharmacological inhibition of the raphe pallidus, a key brainstem thermoregulatory area, in order to assess: i) whether a reversible hyperphosphorylation of Tau protein occurs at the spinal cord level, also testing the possible involvement of microglia activation in this phenomenon; ii) sleep quality after synthetic torpor and its possible involvement in the process of Tau dephosphorylation; iii) whether synthetic torpor has radioprotective properties, by assessing histopathological and molecular features in animals exposed to X-rays irradiation. The results showed that: i) a reversible hyper-phosphorylation of Tau protein also occurs in synthetic torpor in the dorsal horns of the spinal cord; ii) sleep regulation after synthetic torpor seems to be physiological, and sleep deprivation speeds up Tau dephosphorylation; iii) synthetic torpor induces a consistent increase in radioresistance, as shown by analyses at both histological and molecular level.
Resumo:
A successful interaction with objects in the environment requires integrating information concerning object-location with the shape, dimension and position of body parts in space. The former information is coded in a multisensory representation of the space around the body, i.e. peripersonal space (PPS), whereas the latter is enabled by an online, constantly updated, action-orientated multisensory representation of the body (BR) that is critical for action. One of the critical features of these representations is that both PPS and BR are not fixed, but they dynamically change depending on different types of experience. In a series of experiment, I studied plastic properties of PPS and BR in humans. I have developed a series of methods to measure the boundaries of PPS representation (Chapter 4), to study its neural correlates (Chapter 3) and to assess BRs. These tasks have been used to study changes in PPS and BR following tool-use (Chapter 5), multisensory stimulation (Chapter 6), amputation and prosthesis implantation (Chapter 7) or social interaction (Chapter 8). I found that changes in the function (tool-use) and the structure (amputation and prosthesis implantation) of the physical body elongate or shrink both PPS and BR. Social context and social interaction also shape PPS representation. Such high degree of plasticity suggests that our sense of body in space is not given at once, but it is constantly constructed and adapted through experience.
Resumo:
The extended visual network, which includes occipital, temporal and parietal posterior cortices, is a system characterized by an intrinsic connectivity consisting of bidirectional projections. This network is composed of feedforward and feedback projections, some hierarchically arranged and others bypassing intermediate areas, allowing direct communication across early and late stages of processing. Notably, the early visual cortex (EVC) receives considerably more feedback and lateral inputs than feedforward thalamic afferents, placing it at the receiving end of a complex cortical processing cascade, rather than just being the entrance stage of cortical processing of retinal input. The critical role of back-projections to visual cortices has been related to perceptual awareness, amplification of neural activity in lower order areas and improvement of stimulus processing. Recently, significant results have shown behavioural evidence suggesting the importance of reentrant projections in the human visual system, and demonstrated the feasibility of inducing their reversible modulation through a transcranial magnetic stimulation (TMS) paradigm named cortico-cortical paired associative stimulation (ccPAS). Here, a novel research line for the study of recurrent connectivity and its plasticity in the perceptual domain was put forward. In the present thesis, we used ccPAS with the aim of empowering the synaptic efficacy, and thus the connectivity, between the nodes of the visuocognitive system to evaluate the impact on behaviour. We focused on driving plasticity in specific networks entailing the elaboration of relevant social features of human faces (Chapters I & II), alongside the investigation of targeted pathways of sensory decisions (Chapter III). This allowed us to characterize perceptual outcomes which endorse the prominent role of the EVC in visual awareness, fulfilled by the activity of back-projections originating from distributed functional nodes.
Resumo:
Most cognitive functions require the encoding and routing of information across distributed networks of brain regions. Information propagation is typically attributed to physical connections existing between brain regions, and contributes to the formation of spatially correlated activity patterns, known as functional connectivity. While structural connectivity provides the anatomical foundation for neural interactions, the exact manner in which it shapes functional connectivity is complex and not yet fully understood. Additionally, traditional measures of directed functional connectivity only capture the overall correlation between neural activity, and provide no insight on the content of transmitted information, limiting their ability in understanding neural computations underlying the distributed processing of behaviorally-relevant variables. In this work, we first study the relationship between structural and functional connectivity in simulated recurrent spiking neural networks with spike timing dependent plasticity. We use established measures of time-lagged correlation and overall information propagation to infer the temporal evolution of synaptic weights, showing that measures of dynamic functional connectivity can be used to reliably reconstruct the evolution of structural properties of the network. Then, we extend current methods of directed causal communication between brain areas, by deriving an information-theoretic measure of Feature-specific Information Transfer (FIT) quantifying the amount, content and direction of information flow. We test FIT on simulated data, showing its key properties and advantages over traditional measures of overall propagated information. We show applications of FIT to several neural datasets obtained with different recording methods (magneto and electro-encephalography, spiking activity, local field potentials) during various cognitive functions, ranging from sensory perception to decision making and motor learning. Overall, these analyses demonstrate the ability of FIT to advance the investigation of communication between brain regions, uncovering the previously unaddressed content of directed information flow.