5 resultados para NADH-UBIQUINONE OXIDOREDUCTASE

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leber’s hereditary optic neuropathy (LHON) is a mitochondrial disease characterized by a rapid loss of central vision and optic atrophy, due to the selective degeneration of retinal ganglion cells. The age of onset is around 20, and the degenerative process is fast and usually the second eye becomes affected in weeks or months. Even if this pathology is well known and has been well characterized, there are still open questions on its pathophysiology, such as the male prevalence, the incomplete penetrance and the tissue selectivity. This maternally inherited disease is caused by mutations in mitochondrial encoded genes of NADH ubiquinone oxidoreductase (complex I) of the respiratory chain. The 90% of LHON cases are caused by one of the three common mitochondrial DNA mutations (11778/ND4, 14484/ND6 and 3460/ND1) and the remaining 10% is caused by rare pathogenic mutations, reported in literature in one or few families. Moreover, there is also a small subset of patients reported with new putative pathogenic nucleotide changes, which awaits to be confirmed. We here clarify some molecular aspects of LHON, mainly the incomplete penetrance and the role of rare mtDNA mutations or variants on LHON expression, and attempt a possible therapeutic approach using the cybrids cell model. We generated novel structural models for mitochondrial encoded complex I subunits and a conservation analysis and pathogenicity prediction have been carried out for LHON reported mutations. This in-silico approach allowed us to locate LHON pathogenic mutations in defined and conserved protein domains and can be a useful tool in the analysis of novel mtDNA variants with unclear pathogenic/functional role. Four rare LHON pathogenic mutations have been identified, confirming that the ND1 and ND6 genes are mutational hot spots for LHON. All mutations were previously described at least once and we validated their pathogenic role, suggesting the need for their screening in LHON diagnostic protocols. Two novel mtDNA variants with a possible pathogenic role have been also identified in two independent branches of a large pedigree. Functional studies are necessary to define their contribution to LHON in this family. It also been demonstrated that the combination of mtDNA rare polymorphic variants is relevant in determining the maternal recurrence of myoclonus in unrelated LHON pedigrees. Thus, we suggest that particular mtDNA backgrounds and /or the presence of specific rare mutations may increase the pathogenic potential of the primary LHON mutations, thereby giving rise to the extraocular clinical features characteristic of the LHON “plus” phenotype. We identified the first molecular parameter that clearly discriminates LHON affected individuals from asymptomatic carriers, the mtDNA copy number. This provides a valuable mechanism for future investigations on variable penetrance in LHON. However, the increased mtDNA content in LHON individuals was not correlated to the functional polymorphism G1444A of PGC-1 alpha, the master regulator of mitochondrial biogenesis, but may be due to gene expression of genes involved in this signaling pathway, such as PGC-1 alpha/beta and Tfam. Future studies will be necessary to identify the biochemical effects of rare pathogenic mutations and to validate the novel candidate mutations here described, in terms of cellular bioenergetic characterization of these variants. Moreover, we were not able to induce mitochondrial biogenesis in cybrids cell lines using bezafibrate. However, other cell line models are available, such as fibroblasts harboring LHON mutations, or other approaches can be used to trigger the mitochondrial biogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis we focussed on the characterization of the reaction center (RC) protein purified from the photosynthetic bacterium Rhodobacter sphaeroides. In particular, we discussed the effects of native and artificial environment on the light-induced electron transfer processes. The native environment consist of the inner antenna LH1 complex that copurifies with the RC forming the so called core complex, and the lipid phase tightly associated with it. In parallel, we analyzed the role of saccharidic glassy matrices on the interplay between electron transfer processes and internal protein dynamics. As a different artificial matrix, we incorporated the RC protein in a layer-by-layer structure with a twofold aim: to check the behaviour of the protein in such an unusual environment and to test the response of the system to herbicides. By examining the RC in its native environment, we found that the light-induced charge separated state P+QB - is markedly stabilized (by about 40 meV) in the core complex as compared to the RC-only system over a physiological pH range. We also verified that, as compared to the average composition of the membrane, the core complex copurifies with a tightly bound lipid complement of about 90 phospholipid molecules per RC, which is strongly enriched in cardiolipin. In parallel, a large ubiquinone pool was found in association with the core complex, giving rise to a quinone concentration about ten times larger than the average one in the membrane. Moreover, this quinone pool is fully functional, i.e. it is promptly available at the QB site during multiple turnover excitation of the RC. The latter two observations suggest important heterogeneities and anisotropies in the native membranes which can in principle account for the stabilization of the charge separated state in the core complex. The thermodynamic and kinetic parameters obtained in the RC-LH1 complex are very close to those measured in intact membranes, indicating that the electron transfer properties of the RC in vivo are essentially determined by its local environment. The studies performed by incorporating the RC into saccharidic matrices evidenced the relevance of solvent-protein interactions and dynamical coupling in determining the kinetics of electron transfer processes. The usual approach when studying the interplay between internal motions and protein function consists in freezing the degrees of freedom of the protein at cryogenic temperature. We proved that the “trehalose approach” offers distinct advantages with respect to this traditional methodology. We showed, in fact, that the RC conformational dynamics, coupled to specific electron transfer processes, can be modulated by varying the hydration level of the trehalose matrix at room temperature, thus allowing to disentangle solvent from temperature effects. The comparison between different saccharidic matrices has revealed that the structural and dynamical protein-matrix coupling depends strongly upon the sugar. The analyses performed in RCs embedded in polyelectrolyte multilayers (PEM) structures have shown that the electron transfer from QA - to QB, a conformationally gated process extremely sensitive to the RC environment, can be strongly modulated by the hydration level of the matrix, confirming analogous results obtained for this electron transfer reaction in sugar matrices. We found that PEM-RCs are a very stable system, particularly suitable to study the thermodynamics and kinetics of herbicide binding to the QB site. These features make PEM-RC structures quite promising in the development of herbicide biosensors. The studies discussed in the present thesis have shown that, although the effects on electron transfer induced by the native and artificial environments tested are markedly different, they can be described on the basis of a common kinetic model which takes into account the static conformational heterogeneity of the RC and the interconversion between conformational substates. Interestingly, the same distribution of rate constants (i.e. a Gamma distribution function) can describe charge recombination processes in solutions of purified RC, in RC-LH1 complexes, in wet and dry RC-PEM structures and in glassy saccharidic matrices over a wide range of hydration levels. In conclusion, the results obtained for RCs in different physico-chemical environments emphasize the relevance of the structure/dynamics solvent/protein coupling in determining the energetics and the kinetics of electron transfer processes in a membrane protein complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidative stress is considered to be of major relevance for a variety of pathological processes. Thus, it is valuable to identify compounds, which might act as antioxidants, i.e. compounds that antagonize the deleterious action of reactive oxygen species (ROS) on biomolecules. The mode of action of these compounds could be either to scavenge ROS directly or to trigger protective mechanisms inside the cell, thereby resulting in improved defense against ROS. Sulforaphane (SF) (1-isothiocyanato-(4R)-(methylsulfinyl)butane) is a naturally occurring cancer chemopreventive agent found as a precursor glucosinolate in Cruciferous vegetables like broccoli. Although SF is not a direct-acting antioxidant, there is substantial evidence that SF acts indirectly to increase the antioxidant capacity of animal cells and their abilities to cope with oxidative stress. Induction of phase 2 enzymes is one means by which SF enhances the cellular antioxidant capacity. Enzymes induced by SF include Glutathione S-transferases (GST) and NAD[P]H:quinone oxidoreductase (NQO1) which can function as protectors against oxidative stress. To protect themselves from oxidative stress, cells are equipped with reducing buffer systems including the GSH and thioredoxin (Trx) reductase. GSH is an important tripeptide thiol which in addition to being the substrate for GSTs maintains the cellular oxidation– reduction balance and protects cells against free radical species. Aim of the first part of this thesis was to investigate the ability of SF to induce the expression and the activity of different phase 2 and antioxidant enzymes (such as GST, GR, GPx, NQO1, TR, SOD, CAT) in an in vitro model of rat cardiomyocytes, and also to define if SF treatment supprts cells in counteracting oxidative stress induced by H2O2 It is well known that acute exhaustive exercise causes significant reactive oxygen species generation that results in oxidative stress, which can induce negative effects on health and well being. In fact, increased oxidative stress and biomarkers (e.g., protein carbonyls, MDA, and 8- hydroxyguanosine) as well as muscle damage biomarkers (e.g. plasmatic Creatine cinase and Lactate dehydrogenase) have been observed after supramaximal sprint exercises, exhaustive longdistance cycling or running as well as resistance-type exercises, both in trained and untrained humans. Markers of oxidative stress also increase in rodents following exhaustive exercise. Moreover, antioxidant enzyme activities and expressions of antioxidant enzymes are known to increase in response to exhaustive exercise in both animal and human tissues. Aim of this project was to evaluate the effect of SF supplementation in counteracting oxidative stress induced by physical activity through its ability to induce phase 2, and antioxidant enzymes in rat muscle. The results show that SF is a nutraceutical compound able to induce the activity of different phase 2 and antioxidant enzymes in both cardiac muscle and skeletal muscle. Thanks to its actions SF is becoming a promising molecule able to prevent cardiovascular damages induced by oxidative stress and muscle damages induced by acute exhaustive exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent knowledge supports the hypothesis that, beyond meeting nutrition needs, diet may modulate various functions in the body and play beneficial roles in some diseases. Research on functional foods is addressing the physiologic effects and health benefits of foods and food components, with the aim of authorizing specific health claims. The recognition that oxidative stress plays a major role in the pathophysiology of cardiac disorders has led to extensive investigations of the protective effects of exogenous antioxidants, but results are controversial. A promising strategy for protecting cardiac cells against oxidative damage may be through the induction of endogenous phase 2 enzymes with the enhancement of cellular antioxidant capacity. Sulforaphane (SF), a naturally occurring isothiocyanate abundant in Cruciferous vegetables, has gained attention as a potential chemopreventive compound thanks to its ability to induce several classes of genes implicated in reactive oxygen species (ROS) and electrophiles detoxification. Antioxidant responsive element (ARE)-mediated gene induction is a pivotal mechanism of cellular defence against the toxicity of electrophiles and ROS. The transcription factor NF-E2-related factor-2 (Nrf2), is essential for the up-regulation of these genes. We investigated whether SF could exert cardioprotective effects against oxidative stress and elucidated the mechanisms underpinning these effects. Accordingly, using cultured rat neonatal cardiomyocytes as a model system, we evaluated the time-dependent induction of gene transcription, the corresponding protein expression and activity of various antioxidant and phase 2 enzymes (catalase, superoxide dismutase, glutathione and related enzymes glutathione reductase, glutathione peroxidase and glutathione S-transferase, NAD(P)H: quinone oxidoreductase 1 and thioredoxine reductase) elicited by SF. The results were correlated to intracellular ROS production and cell viability after oxidative stress generated by H2O2, and confirmed the ability of SF to exert cytoprotective effects acting as an indirect antioxidant. Furthermore, to get better insight into SF mechanism of action, we investigated the effect of SF treatment on Nrf2 and the upstream signalling pathways MAPK ERK1/2 and PI3K/Akt, known to mediate a pro survival signal in the heart. The use of specific inhibitors of ERK1/2 and Akt phosphorylation demonstrated their involvement in phase 2 enzymes induction. The concentration of SF tested in this study is comparable to peak plasma concentration achieved after dietary exposure giving clear relevance to our data to support dietary intake of Cruciferous vegetables in cytoprotection against oxidative stress, a common determinant of many cardiovascular diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The DOMON domain is a domain widespread in nature, predicted to fold in a β-sandwich structure. In plants, AIR12 is constituted by a single DOMON domain located in the apoplastic space and is GPI-modified for anchoring to the plasma membrane. Arabidopsis thaliana AIR12 has been heterologously expressed as a recombinant protein (recAtAIR12) in Pichia pastoris. Spectrophotometrical analysis of the purified protein showed that recAtAir12 is a cytochrome b. RecAtAIR12 is highly glycosylated, it is reduced by ascorbate, superoxide and naftoquinones, oxidised by monodehydroascorbate and oxygen and insensitive to hydrogen peroxide. The addition of recAtAIR12 to permeabilized plasma membranes containing NADH, FeEDTA and menadione, caused a statistically significant increase in hydroxyl radicals as detected by electron paramagnetic resonance. In these conditions, recAtAIR12 has thus a pro-oxidant role. Interestingly, AIR12 is related to the cytochrome domain of cellobiose dehydrogenase which is involved in lignin degradation, possibly via reactive oxygen species (ROS) production. In Arabidopsis the Air12 promoter is specifically activated at sites where cell separations occur and ROS, including •OH, are involved in cell wall modifications. air12 knock-out plants infected with Botrytis cinerea are more resistant than wild-type and air12 complemented plants. Also during B. cinerea infection, cell wall modifications and ROS are involved. Our results thus suggest that AIR12 could be involved in cell wall modifying reactions by interacting with ROS and ascorbate. CyDOMs are plasma membrane redox proteins of plants that are predicted to contain an apoplastic DOMON fused with a transmembrane cytochrome b561 domain. CyDOMs have never been purified nor characterised. The trans-membrane portion of a soybean CyDOM was expressed in E. coli but purification could not be achieved. The DOMON domain was expressed in P. pastoris and shown to be itself a cytochrome b that could be reduced by ascorbate.