2 resultados para Mutational status

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in the gastrointestinal tract. This work considers the pharmacological response in GIST patients treated with imatinib by two different angles: the genetic and somatic point of view. We analyzed polymorphisms influence on treatment outcome, keeping in consideration SNPs in genes involved in drug transport and folate pathway. Naturally, all these intriguing results cannot be considered as the only main mechanism in imatinib response. GIST mainly depends by oncogenic gain of function mutations in tyrosin kinase receptor genes, KIT or PDGFRA, and the mutational status of these two genes or acquisition of secondary mutation is considered the main player in GIST development and progression. To this purpose we analyzed the secondary mutations to better understand how these are involved in imatinib resistance. In our analysis we considered both imatinib and the second line treatment, sunitinib, in a subset of progressive patients. KIT/PDGFRA mutation analysis is an important tool for physicians, as specific mutations may guide therapeutic choices. Currently, the only adaptations in treatment strategy include imatinib starting dose of 800 mg/daily in KIT exon-9-mutated GISTs. In the attempt to individualize treatment, genetic polymorphisms represent a novelty in the definition of biomarkers of imatinib response in addition to the use of tumor genotype. Accumulating data indicate a contributing role of pharmacokinetics in imatinib efficacy, as well as initial response, time to progression and acquired resistance. At the same time it is becoming evident that genetic host factors may contribute to the observed pharmacokinetic inter-patient variability. Genetic polymorphisms in transporters and metabolism may affect the activity or stability of the encoded enzymes. Thus, integrating pharmacogenetic data of imatinib transporters and metabolizing genes, whose interplay has yet to be fully unraveled, has the potential to provide further insight into imatinib response/resistance mechanisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The recent finding that MYC-driven cancers are sensitive to inhibition of the DNA damage response (DDR) pathway, prompted us to investigate the role of DDR pathway as therapeutic target in diffuse large B-cell lymphoma (DLBCL), which frequently overexpresses the MYC oncogene. In a preliminary immunohistochemical study conducted on 99 consecutive DLBCL patients, we found that about half of DLBCLs showed constitutive expression of the phosphorylated forms of checkpoint kinases (CHK) and CDC25c, markers of DDR activation, and of phosphorylated histone H2AX (γH2AX), marker of DNA damage and genomic instability. Constitutive γH2AX expression correlated with c-MYC levels and DDR activation, and defined a subset of tumors characterised by poor outcome. Next, we used the CHK inhibitor PF-0477736 as a tool to investigate whether the inhibition of the DDR pathway might represent a novel therapeutic approach in DLBCL. Submicromolar concentrations of PF-0477736 hindered proliferation in DLBCL cell lines with activated DDR pathway. These results were fully recapitulated with a different CHK inhibitor (AZD-7762). Inhibition of checkpoint kinases induced rapid DNA damage accumulation and apoptosis in DLBCL cell lines and primary cells. These data suggest that pharmacologic inhibition of DDR through targeting of CHK kinases may represent a novel therapeutic strategy in DLBCL. The second part of this work is the clinical, molecular and functional description of a paradigmatic case of primary refractory Burkitt lymphoma characterized by spatial intratumor heterogeneity for the TP53 mutational status, high expression levels of genomic instability and DDR activation markers, primary resistance to chemotherapy and exquisite sensitivity to DDR inhibitors.