5 resultados para Muscular Atrophy

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human reactions to vibration have been extensively investigated in the past. Vibration, as well as whole-body vibration (WBV), has been commonly considered as an occupational hazard for its detrimental effects on human condition and comfort. Although long term exposure to vibrations may produce undesirable side-effects, a great part of the literature is dedicated to the positive effects of WBV when used as method for muscular stimulation and as an exercise intervention. Whole body vibration training (WBVT) aims to mechanically activate muscles by eliciting neuromuscular activity (muscle reflexes) via the use of vibrations delivered to the whole body. The most mentioned mechanism to explain the neuromuscular outcomes of vibration is the elicited neuromuscular activation. Local tendon vibrations induce activity of the muscle spindle Ia fibers, mediated by monosynaptic and polysynaptic pathways: a reflex muscle contraction known as the Tonic Vibration Reflex (TVR) arises in response to such vibratory stimulus. In WBVT mechanical vibrations, in a range from 10 to 80 Hz and peak to peak displacements from 1 to 10 mm, are usually transmitted to the patient body by the use of oscillating platforms. Vibrations are then transferred from the platform to a specific muscle group through the subject body. To customize WBV treatments, surface electromyography (SEMG) signals are often used to reveal the best stimulation frequency for each subject. Use of SEMG concise parameters, such as root mean square values of the recordings, is also a common practice; frequently a preliminary session can take place in order to discover the more appropriate stimulation frequency. Soft tissues act as wobbling masses vibrating in a damped manner in response to mechanical excitation; Muscle Tuning hypothesis suggest that neuromuscular system works to damp the soft tissue oscillation that occurs in response to vibrations; muscles alters their activity to dampen the vibrations, preventing any resonance phenomenon. Muscle response to vibration is however a complex phenomenon as it depends on different parameters, like muscle-tension, muscle or segment-stiffness, amplitude and frequency of the mechanical vibration. Additionally, while in the TVR study the applied vibratory stimulus and the muscle conditions are completely characterised (a known vibration source is applied directly to a stretched/shortened muscle or tendon), in WBV study only the stimulus applied to a distal part of the body is known. Moreover, mechanical response changes in relation to the posture. The transmissibility of vibratory stimulus along the body segment strongly depends on the position held by the subject. The aim of this work was the investigation on the effects that the use of vibrations, in particular the effects of whole body vibrations, may have on muscular activity. A new approach to discover the more appropriate stimulus frequency, by the use of accelerometers, was also explored. Different subjects, not affected by any known neurological or musculoskeletal disorders, were voluntarily involved in the study and gave their informed, written consent to participate. The device used to deliver vibration to the subjects was a vibrating platform. Vibrations impressed by the platform were exclusively vertical; platform displacement was sinusoidal with an intensity (peak-to-peak displacement) set to 1.2 mm and with a frequency ranging from 10 to 80 Hz. All the subjects familiarized with the device and the proper positioning. Two different posture were explored in this study: position 1 - hack squat; position 2 - subject standing on toes with heels raised. SEMG signals from the Rectus Femoris (RF), Vastus Lateralis (VL) and Vastus medialis (VM) were recorded. SEMG signals were amplified using a multi-channel, isolated biomedical signal amplifier The gain was set to 1000 V/V and a band pass filter (-3dB frequency 10 - 500 Hz) was applied; no notch filters were used to suppress line interference. Tiny and lightweight (less than 10 g) three-axial MEMS accelerometers (Freescale semiconductors) were used to measure accelerations of onto patient’s skin, at EMG electrodes level. Accelerations signals provided information related to individuals’ RF, Biceps Femoris (BF) and Gastrocnemius Lateralis (GL) muscle belly oscillation; they were pre-processed in order to exclude influence of gravity. As demonstrated by our results, vibrations generate peculiar, not negligible motion artifact on skin electrodes. Artifact amplitude is generally unpredictable; it appeared in all the quadriceps muscles analysed, but in different amounts. Artifact harmonics extend throughout the EMG spectrum, making classic high-pass filters ineffective; however, their contribution was easy to filter out from the raw EMG signal with a series of sharp notch filters centred at the vibration frequency and its superior harmonics (1.5 Hz wide). However, use of these simple filters prevents the revelation of EMG power potential variation in the mentioned filtered bands. Moreover our experience suggests that the possibility of reducing motion artefact, by using particular electrodes and by accurately preparing the subject’s skin, is not easily viable; even though some small improvements were obtained, it was not possible to substantially decrease the artifact. Anyway, getting rid of those artifacts lead to some true EMG signal loss. Nevertheless, our preliminary results suggest that the use of notch filters at vibration frequency and its harmonics is suitable for motion artifacts filtering. In RF SEMG recordings during vibratory stimulation only a little EMG power increment should be contained in the mentioned filtered bands due to synchronous electromyographic activity of the muscle. Moreover, it is better to remove the artifact that, in our experience, was found to be more than 40% of the total signal power. In summary, many variables have to be taken into account: in addition to amplitude, frequency and duration of vibration treatment, other fundamental variables were found to be subject anatomy, individual physiological condition and subject’s positioning on the platform. Studies on WBV treatments that include surface EMG analysis to asses muscular activity during vibratory stimulation should take into account the presence of motion artifacts. Appropriate filtering of artifacts, to reveal the actual effect on muscle contraction elicited by vibration stimulus, is mandatory. However as a result of our preliminary study, a simple multi-band notch filtering may help to reduce randomness of the results. Muscle tuning hypothesis seemed to be confirmed. Our results suggested that the effects of WBV are linked to the actual muscle motion (displacement). The greater was the muscle belly displacement the higher was found the muscle activity. The maximum muscle activity has been found in correspondence with the local mechanical resonance, suggesting a more effective stimulation at the specific system resonance frequency. Holding the hypothesis that muscle activation is proportional to muscle displacement, treatment optimization could be obtained by simply monitoring local acceleration (resonance). However, our study revealed some short term effects of vibratory stimulus; prolonged studies should be assembled in order to consider the long term effectiveness of these results. Since local stimulus depends on the kinematic chain involved, WBV muscle stimulation has to take into account the transmissibility of the stimulus along the body segment in order to ensure that vibratory stimulation effectively reaches the target muscle. Combination of local resonance and muscle response should also be further investigated to prevent hazards to individuals undergoing WBV treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mitochondrion is an essential cytoplasmic organelle that provides most of the energy necessary for eukaryotic cell physiology. Mitochondrial structure and functions are maintained by proteins of both mitochondrial and nuclear origin. These organelles are organized in an extended network that dynamically fuses and divides. Mitochondrial morphology results from the equilibrium between fusion and fission processes, controlled by a family of “mitochondria-shaping” proteins. It is becoming clear that defects in mitochondrial dynamics can impair mitochondrial respiration, morphology and motility, leading to apoptotic cell death in vitro and more or less severe neurodegenerative disorders in vivo in humans. Mutations in OPA1, a nuclear encoded mitochondrial protein, cause autosomal Dominant Optic Atrophy (DOA), a heterogeneous blinding disease characterized by retinal ganglion cell degeneration leading to optic neuropathy (Delettre et al., 2000; Alexander et al., 2000). OPA1 is a mitochondrial dynamin-related guanosine triphosphatase (GTPase) protein involved in mitochondrial network dynamics, cytochrome c storage and apoptosis. This protein is anchored or associated on the inner mitochondrial membrane facing the intermembrane space. Eight OPA1 isoforms resulting from alternative splicing combinations of exon 4, 4b and 5b have been described (Delettre et al., 2001). These variants greatly vary among diverse organs and the presence of specific isoforms has been associated with various mitochondrial functions. The different spliced exons encode domains included in the amino-terminal region and contribute to determine OPA1 functions (Olichon et al., 2006). It has been shown that exon 4, that is conserved throughout evolution, confers functions to OPA1 involved in maintenance of the mitochondrial membrane potential and in the fusion of the network. Conversely, exon 4b and exon 5b, which are vertebrate specific, are involved in regulation of cytochrome c release from mitochondria, and activation of apoptosis, a process restricted to vertebrates (Olichon et al., 2007). While Mgm1p has been identified thanks to its role in mtDNA maintenance, it is only recently that OPA1 has been linked to mtDNA stability. Missense mutations in OPA1 cause accumulation of multiple deletions in skeletal muscle. The syndrome associated to these mutations (DOA-1 plus) is complex, consisting of a combination of dominant optic atrophy, progressive external ophtalmoplegia, peripheral neuropathy, ataxia and deafness (Amati- Bonneau et al., 2008; Hudson et al., 2008). OPA1 is the fifth gene associated with mtDNA “breakage syndrome” together with ANT1, PolG1-2 and TYMP (Spinazzola et al., 2009). In this thesis we show for the first time that specific OPA1 isoforms associated to exon 4b are important for mtDNA stability, by anchoring the nucleoids to the inner mitochondrial membrane. Our results clearly demonstrate that OPA1 isoforms including exon 4b are intimately associated to the maintenance of the mitochondrial genome, as their silencing leads to mtDNA depletion. The mechanism leading to mtDNA loss is associated with replication inhibition in cells where exon 4b containing isoforms were down-regulated. Furthermore silencing of exon 4b associated isoforms is responsible for alteration in mtDNA-nucleoids distribution in the mitochondrial network. In this study it was evidenced that OPA1 exon 4b isoform is cleaved to provide a 10kd peptide embedded in the inner membrane by a second transmembrane domain, that seems to be crucial for mitochondrial genome maintenance and does correspond to the second transmembrane domain of the yeasts orthologue encoded by MGM1 or Msp1, which is also mandatory for this process (Diot et al., 2009; Herlan et al., 2003). Furthermore in this thesis we show that the NT-OPA1-exon 4b peptide co-immuno-precipitates with mtDNA and specifically interacts with two major components of the mitochondrial nucleoids: the polymerase gamma and Tfam. Thus, from these experiments the conclusion is that NT-OPA1- exon 4b peptide contributes to the nucleoid anchoring in the inner mitochondrial membrane, a process that is required for the initiation of mtDNA replication and for the distribution of nucleoids along the network. These data provide new crucial insights in understanding the mechanism involved in maintenance of mtDNA integrity, because they clearly demonstrate that, besides genes implicated in mtDNA replications (i.e. polymerase gamma, Tfam, twinkle and genes involved in the nucleotide pool metabolism), OPA1 and mitochondrial membrane dynamics play also an important role. Noticeably, the effect on mtDNA is different depending on the specific OPA1 isoforms down-regulated, suggesting the involvement of two different combined mechanisms. Over two hundred OPA1 mutations, spread throughout the coding region of the gene, have been described to date, including substitutions, deletions or insertions. Some mutations are predicted to generate a truncated protein inducing haploinsufficiency, whereas the missense nucleotide substitutions result in aminoacidic changes which affect conserved positions of the OPA1 protein. So far, the functional consequences of OPA1 mutations in cells from DOA patients are poorly understood. Phosphorus MR spectroscopy in patients with the c.2708delTTAG deletion revealed a defect in oxidative phosphorylation in muscles (Lodi et al., 2004). An energetic impairment has been also show in fibroblasts with the severe OPA1 R445H mutation (Amati-Bonneau et al., 2005). It has been previously reported by our group that OPA1 mutations leading to haploinsufficiency are associated in fibroblasts to an oxidative phosphorylation dysfunction, mainly involving the respiratory complex I (Zanna et al., 2008). In this study we have evaluated the energetic efficiency of a panel of skin fibroblasts derived from DOA patients, five fibroblast cell lines with OPA1 mutations causing haploinsufficiency (DOA-H) and two cell lines bearing mis-sense aminoacidic substitutions (DOA-AA), and compared with control fibroblasts. Although both types of DOA fibroblasts maintained a similar ATP content when incubated in a glucose-free medium, i.e. when forced to utilize the oxidative phosphorylation only to produce ATP, the mitochondrial ATP synthesis through complex I, measured in digitonin-permeabilized cells, was significantly reduced in cells with OPA1 haploinsufficiency only, whereas it was similar to controls in cells with the missense substitutions. Furthermore, evaluation of the mitochondrial membrane potential (DYm) in the two fibroblast lines DOA-AA and in two DOA-H fibroblasts, namely those bearing the c.2819-2A>C mutation and the c.2708delTTAG microdeletion, revealed an anomalous depolarizing response to oligomycin in DOA-H cell lines only. This finding clearly supports the hypothesis that these mutations cause a significant alteration in the respiratory chain function, which can be unmasked only when the operation of the ATP synthase is prevented. Noticeably, oligomycin-induced depolarization in these cells was almost completely prevented by preincubation with cyclosporin A, a well known inhibitor of the permeability transition pore (PTP). This results is very important because it suggests for the first time that the voltage threshold for PTP opening is altered in DOA-H fibroblasts. Although this issue has not yet been addressed in the present study, several are the mechanisms that have been proposed to lead to PTP deregulation, including in particular increased reactive oxygen species production and alteration of Ca2+ homeostasis, whose role in DOA fibroblasts PTP opening is currently under investigation. Identification of the mechanisms leading to altered threshold for PTP regulation will help our understanding of the pathophysiology of DOA, but also provide a strategy for therapeutic intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dystrophin is a subsarcolemmal protein critical for the integrity of muscle fibers by linking the actin cytoskeleton to the extracellular matrix via the dystroglycan complex. It is reported that dystroglycans are also localized in the skin, at dermal-epidermal junction. Here we show that epidermal melanocytes express dystrophin at the interface with the basement membrane. The full-length muscle isoform mDp427 was clearly detectable in epidermis and in melanocyte cultures as assessed by RNA and western blot analysis. Dystrophin was absent in Duchenne Muscular Dystrophy (DMD) patients melanocytes, and the ultrastructural analysis revealed mitochondrial alterations, similar to those occurring in myoblasts from the same patients. Interestingly, mitochondrial dysfunction of DMD melanocytes reflected the alterations identified in dystrophin-deficient muscle cells. In fact, mitochondria of melanocytes from DMD patients accumulated tetramethylrhodamine methyl ester but, on the contrary of control donor, mitochondria of DMD patients readily depolarized upon the addition of oligomycin, suggesting either that they are maintaining the membrane potential at the expense of glycolytic ATP, or that they are affected by a latent dysfunction unmasked by inhibition of the ATP synthase. Melanocyte cultures can be easily obtained by conventional skin biopsies, less invasive procedure than muscular biopsy, so that they may represent an alternative cellular model to myoblast for studying and monitoring dystrophinopathies also in response to pharmacological treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction and Background: Multiple system atrophy (MSA) is a sporadic, adult-onset, progressive neurodegenerative disease characterized clinically by parkinsonism, cerebellar ataxia, and autonomic failure. We investigated cognitive functions longitudinally in a group of probable MSA patients, matching data with sleep parameters. Patients and Methods: 10 patients (7m/3f) underwent a detailed interview, a general and neurological examination, laboratory exams, MRI scans, a cardiovascular reflexes study, a battery of neuropsychological tests, and video-polysomnographic recording (VPSG). Patients were revaluated (T1) a mean of 16±5 (range: 12-28) months after the initial evaluation (T0). At T1, the neuropsychological assessment and VPSG were repeated. Results: The mean patient age was 57.8±6.4 years (range: 47-64) with a mean age at disease onset of 53.2±7.1 years (range: 43-61) and symptoms duration at T0 of 60±48 months (range: 12-144). At T0, 7 patients showed no cognitive deficits while 3 patients showed isolated cognitive deficits. At T1, 1 patient worsened developing multiple cognitive deficits from a normal condition. At T0 and T1, sleep efficiency was reduced, REM latency increased, NREM sleep stages 1-2 slightly increased. Comparisons between T1 and T0 showed a significant worsening in two tests of attention and no significant differences of VPSG parameters. No correlation was found between neuropsychological results and VPSG findings or RBD duration. Discussion and Conclusions: The majority of our patients do not show any cognitive deficits at T0 and T1, while isolated cognitive deficits are present in the remaining patients. Attention is the cognitive function which significantly worsened. Our data confirm the previous findings concerning the prevalence, type and the evolution of cognitive deficits in MSA. Regarding the developing of a condition of dementia, our data did not show a clear-cut diagnosis of dementia. We confirm a mild alteration of sleep structure. RBD duration does not correlate with neuropsychological findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La distrofia muscolare di Emery-Dreifuss (EDMD) è una miopatia degenerativa ereditaria caratterizzata da debolezza e atrofia dei muscoli senza coinvolgimento del sistema nervoso. Individui EDMD presentano, inoltre, cardiomiopatia con difetto di conduzione che provoca rischio di morte improvvisa. Diversi studi evidenziano un coinvolgimento di citochine in diverse distrofie muscolari causanti infiammazione cronica, riassorbimento osseo, necrosi cellulare. Abbiamo effettuato una valutazione simultanea della concentrazione di citochine, chemochine, fattori di crescita, presenti nel siero di un gruppo di 25 pazienti EDMD. L’analisi effettuata ha evidenziato un aumento di citochine quali IL-17, TGFβ2, INF-γ e del TGFβ1. Inoltre, una riduzione del fattore di crescita VEGF e della chemochina RANTES è stata rilevata nel siero dei pazienti EDMD rispetto ai pazienti controllo. Ulteriori analisi effettuate tramite saggio ELISA hanno evidenziato un aumento dei livelli di TGFβ2 e IL-6 nel terreno di coltura di fibroblasti EDMD2. Per testare l’effetto nei muscoli, di citochine alterate, abbiamo utilizzato terreno condizionante di fibroblasti EDMD per differenziare mioblasti murini C2C12. Una riduzione del grado di differenziamento è stata osservata nei mioblasti condizionati con terreno EDMD. Trattando queste cellule con anticorpi neutralizzanti contro TGFβ2 e IL-6 si è avuto un miglioramento del grado di differenziamento. In C2C12 che esprimevano la mutazione H222P del gene Lmna,non sono state osservate alterazioni di citochine e benefici di anticorpi neutralizzanti. I dati mostrano un effetto patogenetico delle citochine alterate come osservato in fibroblasti e siero di pazienti, suggerendo un effetto sul tessuto fibrotico di muscoli EDMD. Un effetto intrinseco alla mutazione della lamina A è stato rilevato sul espressione di caveolina 3 in mioblasti differenziati EDMD. I risultati si aggiungono a dati forniti sulla patogenesi dell' EDMD confermando che fattori intrinseci ed estrinseci contribuiscono alla malattia. Utilizzo di anticorpi neutralizzanti specifici contro fattori estrinseci potrebbe rappresentare un approccio terapeutico come mostrato in questo studio.