12 resultados para Muscle-bone functional unit

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the PhD program in chemistry at the University of Bologna, the environmental sustainability of some industrial processes was studied through the application of the LCA methodology. The efforts were focused on the study of processes under development, in order to assess their environmental impacts to guide their transfer on an industrial scale. Processes that could meet the principles of Green Chemistry have been selected and their environmental benefits have been evaluated through a holistic approach. The use of renewable sources was assessed through the study of terephthalic acid production from biomass (which showed that only the use of waste can provide an environmental benefit) and a new process for biogas upgrading (whose potential is to act as a carbon capture technology). Furthermore, the basis for the development of a new methodology for the prediction of the environmental impact of ionic liquids has been laid. It has already shown good qualities in identifying impact trends, but further research on it is needed to obtain a more reliable and usable model. In the context of sustainable development that will not only be sector-specific, the environmental performance of some processes linked to the primary production sector has also been evaluated. The impacts of some organic farming practices in the wine production were analysed, the use of the Cereal Unit parameter was proposed as a functional unit for the comparison of different crop rotations, and the carbon footprint of school canteen meals was calculated. The results of the analyses confirm that sustainability in the industrial production sector should be assessed from a life cycle perspective, in order to consider all the flows involved during the different phases. In particular, it is necessary that environmental assessments adopt a cradle-to-gate approach, to avoid shifting the environmental burden from one phase to another.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This PhD work was aimed to design, develop, and characterize gelatin-based scaffolds, for the repair of defects in the muscle-skeletal system. Gelatin is a biopolymer widely used for pharmaceutical and medical applications, thanks to its biodegradability and biocompatibility. It is obtained from collagen via thermal denaturation or chemical-physical degradation. Despite its high potential as biomaterial, gelatin exhibits poor mechanical properties and a low resistance in aqueous environment. Crosslinking treatment and enrichment with reinforcement materials are thus required for biomedical applications. In this work, gelatin based scaffolds were prepared following three different strategies: films were prepared through the solvent casting method, electrospinning technique was applied for the preparation of porous mats, and 3D porous scaffolds were prepared through freeze-drying. The results obtained on films put into evidence the influence of pH, crosslinking and reinforcement with montmorillonite (MMT), on the structure, stability and mechanical properties of gelatin and MMT/gelatin composites. The information acquired on the effect of crosslinking in different conditions was utilized to optimize the preparation procedure of electrospun and freeze-dried scaffolds. A successful method was developed to prepare gelatin nanofibrous scaffolds electrospun from acetic acid/water solution and stabilized with a non-toxic crosslinking agent, genipin, able to preserve their original morphology after exposure to water. Moreover, the co-electrospinning technique was used to prepare nanofibrous scaffolds at variable content of gelatin and polylactic acid. Preliminary in vitro tests indicated that the scaffolds are suitable for cartilage tissue engineering, and that their potential applications can be extended to cartilage-bone interface tissue engineering. Finally, 3D porous gelatin scaffolds, enriched with calcium phosphate, were prepared with the freeze-drying method. The results indicated that the crystallinity of the inorganic phase influences porosity, interconnectivity and mechanical properties. Preliminary in vitro tests show good osteoblast response in terms of proliferation and adhesion on all the scaffolds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In case of severe osteoarthritis at the knee causing pain, deformity, and loss of stability and mobility, the clinicians consider that the substitution of these surfaces by means of joint prostheses. The objectives to be pursued by this surgery are: complete pain elimination, restoration of the normal physiological mobility and joint stability, correction of all deformities and, thus, of limping. The knee surgical navigation systems have bee developed in computer-aided surgery in order to improve the surgical final outcome in total knee arthroplasty. These systems provide the surgeon with quantitative and real-time information about each surgical action, like bone cut executions and prosthesis component alignment, by mean of tracking tools rigidly fixed onto the femur and the tibia. Nevertheless, there is still a margin of error due to the incorrect surgical procedures and to the still limited number of kinematic information provided by the current systems. Particularly, patello-femoral joint kinematics is not considered in knee surgical navigation. It is also unclear and, thus, a source of misunderstanding, what the most appropriate methodology is to study the patellar motion. In addition, also the knee ligamentous apparatus is superficially considered in navigated total knee arthroplasty, without taking into account how their physiological behavior is altered by this surgery. The aim of the present research work was to provide new functional and biomechanical assessments for the improvement of the surgical navigation systems for joint replacement in the human lower limb. This was mainly realized by means of the identification and development of new techniques that allow a thorough comprehension of the functioning of the knee joint, with particular attention to the patello-femoral joint and to the main knee soft tissues. A knee surgical navigation system with active markers was used in all research activities presented in this research work. Particularly, preliminary test were performed in order to assess the system accuracy and the robustness of a number of navigation procedures. Four studies were performed in-vivo on patients requiring total knee arthroplasty and randomly implanted by means of traditional and navigated procedures in order to check for the real efficacy of the latter with respect to the former. In order to cope with assessment of patello-femoral joint kinematics in the intact and replaced knees, twenty in-vitro tests were performed by using a prototypal tracking tool also for the patella. In addition to standard anatomical and articular recommendations, original proposals for defining the patellar anatomical-based reference frame and for studying the patello-femoral joint kinematics were reported and used in these tests. These definitions were applied to two further in-vitro tests in which, for the first time, also the implant of patellar component insert was fully navigated. In addition, an original technique to analyze the main knee soft tissues by means of anatomical-based fiber mappings was also reported and used in the same tests. The preliminary instrumental tests revealed a system accuracy within the millimeter and a good inter- and intra-observer repeatability in defining all anatomical reference frames. In in-vivo studies, the general alignments of femoral and tibial prosthesis components and of the lower limb mechanical axis, as measured on radiographs, was more satisfactory, i.e. within ±3°, in those patient in which total knee arthroplasty was performed by navigated procedures. As for in-vitro tests, consistent patello-femoral joint kinematic patterns were observed over specimens throughout the knee flexion arc. Generally, the physiological intact knee patellar motion was not restored after the implant. This restoration was successfully achieved in the two further tests where all component implants, included the patellar insert, were fully navigated, i.e. by means of intra-operative assessment of also patellar component positioning and general tibio-femoral and patello-femoral joint assessment. The tests for assessing the behavior of the main knee ligaments revealed the complexity of the latter and the different functional roles played by the several sub-bundles compounding each ligament. Also in this case, total knee arthroplasty altered the physiological behavior of these knee soft tissues. These results reveal in-vitro the relevance and the feasibility of the applications of new techniques for accurate knee soft tissues monitoring, patellar tracking assessment and navigated patellar resurfacing intra-operatively in the contest of the most modern operative techniques. This present research work gives a contribution to the much controversial knowledge on the normal and replaced of knee kinematics by testing the reported new methodologies. The consistence of these results provides fundamental information for the comprehension and improvements of knee orthopedic treatments. In the future, the reported new techniques can be safely applied in-vivo and also adopted in other joint replacements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently in most of the industrial automation process an ever increasing degree of automation has been observed. This increasing is motivated by the higher requirement of systems with great performance in terms of quality of products/services generated, productivity, efficiency and low costs in the design, realization and maintenance. This trend in the growth of complex automation systems is rapidly spreading over automated manufacturing systems (AMS), where the integration of the mechanical and electronic technology, typical of the Mechatronics, is merging with other technologies such as Informatics and the communication networks. An AMS is a very complex system that can be thought constituted by a set of flexible working stations, one or more transportation systems. To understand how this machine are important in our society let considerate that every day most of us use bottles of water or soda, buy product in box like food or cigarets and so on. Another important consideration from its complexity derive from the fact that the the consortium of machine producers has estimated around 350 types of manufacturing machine. A large number of manufacturing machine industry are presented in Italy and notably packaging machine industry,in particular a great concentration of this kind of industry is located in Bologna area; for this reason the Bologna area is called “packaging valley”. Usually, the various parts of the AMS interact among them in a concurrent and asynchronous way, and coordinate the parts of the machine to obtain a desiderated overall behaviour is an hard task. Often, this is the case in large scale systems, organized in a modular and distributed manner. Even if the success of a modern AMS from a functional and behavioural point of view is still to attribute to the design choices operated in the definition of the mechanical structure and electrical electronic architecture, the system that governs the control of the plant is becoming crucial, because of the large number of duties associated to it. Apart from the activity inherent to the automation of themachine cycles, the supervisory system is called to perform other main functions such as: emulating the behaviour of traditional mechanical members thus allowing a drastic constructive simplification of the machine and a crucial functional flexibility; dynamically adapting the control strategies according to the different productive needs and to the different operational scenarios; obtaining a high quality of the final product through the verification of the correctness of the processing; addressing the operator devoted to themachine to promptly and carefully take the actions devoted to establish or restore the optimal operating conditions; managing in real time information on diagnostics, as a support of the maintenance operations of the machine. The kind of facilities that designers can directly find on themarket, in terms of software component libraries provides in fact an adequate support as regard the implementation of either top-level or bottom-level functionalities, typically pertaining to the domains of user-friendly HMIs, closed-loop regulation and motion control, fieldbus-based interconnection of remote smart devices. What is still lacking is a reference framework comprising a comprehensive set of highly reusable logic control components that, focussing on the cross-cutting functionalities characterizing the automation domain, may help the designers in the process of modelling and structuring their applications according to the specific needs. Historically, the design and verification process for complex automated industrial systems is performed in empirical way, without a clear distinction between functional and technological-implementation concepts and without a systematic method to organically deal with the complete system. Traditionally, in the field of analog and digital control design and verification through formal and simulation tools have been adopted since a long time ago, at least for multivariable and/or nonlinear controllers for complex time-driven dynamics as in the fields of vehicles, aircrafts, robots, electric drives and complex power electronics equipments. Moving to the field of logic control, typical for industrial manufacturing automation, the design and verification process is approached in a completely different way, usually very “unstructured”. No clear distinction between functions and implementations, between functional architectures and technological architectures and platforms is considered. Probably this difference is due to the different “dynamical framework”of logic control with respect to analog/digital control. As a matter of facts, in logic control discrete-events dynamics replace time-driven dynamics; hence most of the formal and mathematical tools of analog/digital control cannot be directly migrated to logic control to enlighten the distinction between functions and implementations. In addition, in the common view of application technicians, logic control design is strictly connected to the adopted implementation technology (relays in the past, software nowadays), leading again to a deep confusion among functional view and technological view. In Industrial automation software engineering, concepts as modularity, encapsulation, composability and reusability are strongly emphasized and profitably realized in the so-calledobject-oriented methodologies. Industrial automation is receiving lately this approach, as testified by some IEC standards IEC 611313, IEC 61499 which have been considered in commercial products only recently. On the other hand, in the scientific and technical literature many contributions have been already proposed to establish a suitable modelling framework for industrial automation. During last years it was possible to note a considerable growth in the exploitation of innovative concepts and technologies from ICT world in industrial automation systems. For what concerns the logic control design, Model Based Design (MBD) is being imported in industrial automation from software engineering field. Another key-point in industrial automated systems is the growth of requirements in terms of availability, reliability and safety for technological systems. In other words, the control system should not only deal with the nominal behaviour, but should also deal with other important duties, such as diagnosis and faults isolations, recovery and safety management. Indeed, together with high performance, in complex systems fault occurrences increase. This is a consequence of the fact that, as it typically occurs in reliable mechatronic systems, in complex systems such as AMS, together with reliable mechanical elements, an increasing number of electronic devices are also present, that are more vulnerable by their own nature. The diagnosis problem and the faults isolation in a generic dynamical system consists in the design of an elaboration unit that, appropriately processing the inputs and outputs of the dynamical system, is also capable of detecting incipient faults on the plant devices, reconfiguring the control system so as to guarantee satisfactory performance. The designer should be able to formally verify the product, certifying that, in its final implementation, it will perform itsrequired function guarantying the desired level of reliability and safety; the next step is that of preventing faults and eventually reconfiguring the control system so that faults are tolerated. On this topic an important improvement to formal verification of logic control, fault diagnosis and fault tolerant control results derive from Discrete Event Systems theory. The aimof this work is to define a design pattern and a control architecture to help the designer of control logic in industrial automated systems. The work starts with a brief discussion on main characteristics and description of industrial automated systems on Chapter 1. In Chapter 2 a survey on the state of the software engineering paradigm applied to industrial automation is discussed. Chapter 3 presentes a architecture for industrial automated systems based on the new concept of Generalized Actuator showing its benefits, while in Chapter 4 this architecture is refined using a novel entity, the Generalized Device in order to have a better reusability and modularity of the control logic. In Chapter 5 a new approach will be present based on Discrete Event Systems for the problemof software formal verification and an active fault tolerant control architecture using online diagnostic. Finally conclusive remarks and some ideas on new directions to explore are given. In Appendix A are briefly reported some concepts and results about Discrete Event Systems which should help the reader in understanding some crucial points in chapter 5; while in Appendix B an overview on the experimental testbed of the Laboratory of Automation of University of Bologna, is reported to validated the approach presented in chapter 3, chapter 4 and chapter 5. In Appendix C some components model used in chapter 5 for formal verification are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the growing attention of consumers towards their food, improvement of quality of animal products has become one of the main focus of research. To this aim, the application of modern molecular genetics approaches has been proved extremely useful and effective. This innovative drive includes all livestock species productions, including pork. The Italian pig breeding industry is unique because needs heavy pigs slaughtered at about 160 kg for the production of high quality processed products. For this reason, it requires precise meat quality and carcass characteristics. Two aspects have been considered in this thesis: the application of the transcriptome analysis in post mortem pig muscles as a possible method to evaluate meat quality parameters related to the pre mortem status of the animals, including health, nutrition, welfare, and with potential applications for product traceability (chapters 3 and 4); the study of candidate genes for obesity related traits in order to identify markers associated with fatness in pigs that could be applied to improve carcass quality (chapters 5, 6, and 7). Chapter three addresses the first issue from a methodological point of view. When we considered this issue, it was not obvious that post mortem skeletal muscle could be useful for transcriptomic analysis. Therefore we demonstrated that the quality of RNA extracted from skeletal muscle of pigs sampled at different post mortem intervals (20 minutes, 2 hours, 6 hours, and 24 hours) is good for downstream applications. Degradation occurred starting from 48 h post mortem even if at this time it is still possible to use some RNA products. In the fourth chapter, in order to demonstrate the potential use of RNA obtained up to 24 hours post mortem, we present the results of RNA analysis with the Affymetrix microarray platform that made it possible to assess the level of expression of more of 24000 mRNAs. We did not identify any significant differences between the different post mortem times suggesting that this technique could be applied to retrieve information coming from the transcriptome of skeletal muscle samples not collected just after slaughtering. This study represents the first contribution of this kind applied to pork. In the fifth chapter, we investigated as candidate for fat deposition the TBC1D1 [TBC1 (tre-2/USP6, BUB2, cdc16) gene. This gene is involved in mechanisms regulating energy homeostasis in skeletal muscle and is associated with predisposition to obesity in humans. By resequencing a fragment of the TBC1D1 gene we identified three synonymous mutations localized in exon 2 (g.40A>G, g.151C>T, and g.172T>C) and 2 polymorphisms localized in intron 2 (g.219G>A and g.252G>A). One of these polymorphisms (g.219G>A) was genotyped by high resolution melting (HRM) analysis and PCR-RFLP. Moreover, this gene sequence was mapped by radiation hybrid analysis on porcine chromosome 8. The association study was conducted in 756 performance tested pigs of Italian Large White and Italian Duroc breeds. Significant results were obtained for lean meat content, back fat thickness, visible intermuscular fat and ham weight. In chapter six, a second candidate gene (tribbles homolog 3, TRIB3) is analyzed in a study of association with carcass and meat quality traits. The TRIB3 gene is involved in energy metabolism of skeletal muscle and plays a role as suppressor of adipocyte differentiation. We identified two polymorphisms in the first coding exon of the porcine TRIB3 gene, one is a synonymous SNP (c.132T> C), a second is a missense mutation (c.146C> T, p.P49L). The two polymorphisms appear to be in complete linkage disequilibrium between and within breeds. The in silico analysis of the p.P49L substitution suggests that it might have a functional effect. The association study in about 650 pigs indicates that this marker is associated with back fat thickness in Italian Large White and Italian Duroc breeds in two different experimental designs. This polymorphisms is also associated with lactate content of muscle semimembranosus in Italian Large White pigs. Expression analysis indicated that this gene is transcribed in skeletal muscle and adipose tissue as well as in other tissues. In the seventh chapter, we reported the genotyping results for of 677 SNPs in extreme divergent groups of pigs chosen according to the extreme estimated breeding values for back fat thickness. SNPs were identified by resequencing, literature mining and in silico database mining. analysis, data reported in the literature of 60 candidates genes for obesity. Genotyping was carried out using the GoldenGate (Illumina) platform. Of the analyzed SNPs more that 300 were polymorphic in the genotyped population and had minor allele frequency (MAF) >0.05. Of these SNPs, 65 were associated (P<0.10) with back fat thickness. One of the most significant gene marker was the same TBC1D1 SNPs reported in chapter 5, confirming the role of this gene in fat deposition in pig. These results could be important to better define the pig as a model for human obesity other than for marker assisted selection to improve carcass characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite several clinical tests that have been developed to qualitatively describe complex motor tasks by functional testing, these methods often depend on clinicians' interpretation, experience and training, which make the assessment results inconsistent, without the precision required to objectively assess the effect of the rehabilitative intervention. A more detailed characterization is required to fully capture the various aspects of motor control and performance during complex movements of lower and upper limbs. The need for cost-effective and clinically applicable instrumented tests would enable quantitative assessment of performance on a subject-specific basis, overcoming the limitations due to the lack of objectiveness related to individual judgment, and possibly disclosing subtle alterations that are not clearly visible to the observer. Postural motion measurements at additional locations, such as lower and upper limbs and trunk, may be necessary in order to obtain information about the inter-segmental coordination during different functional tests involved in clinical practice. With these considerations in mind, this Thesis aims: i) to suggest a novel quantitative assessment tool for the kinematics and dynamics evaluation of a multi-link kinematic chain during several functional motor tasks (i.e. squat, sit-to-stand, postural sway), using one single-axis accelerometer per segment, ii) to present a novel quantitative technique for the upper limb joint kinematics estimation, considering a 3-link kinematic chain during the Fugl-Meyer Motor Assessment and using one inertial measurement unit per segment. The suggested methods could have several positive feedbacks from clinical practice. The use of objective biomechanical measurements, provided by inertial sensor-based technique, may help clinicians to: i) objectively track changes in motor ability, ii) provide timely feedback about the effectiveness of administered rehabilitation interventions, iii) enable intervention strategies to be modified or changed if found to be ineffective, and iv) speed up the experimental sessions when several subjects are asked to perform different functional tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, we studied the cross-talk between malignant cells and stromal cells, with the aim to elucidate the respective contribution to myeloid neoplasm onset and progression. First, we characterized and compared mesenchymal stromal cells (MSCs) isolated from myelodysplastic syndrome (MDS-MSCs) and acute myeloid leukemia (AML-MSCs) patients. We demonstrated that, despite some unaltered functions, patient-derived MSCs show also intrinsic, distinct functional abnormalities, which could all potentially favor a leukemia-protective bone marrow (BM) niche in vivo. Second, we investigated the ability of AML cells to modulate the AML-MSC functions. In a GEP-screening, we found that 40% of BM-derived AML samples show a higher IFN-γ expression, compared to the mean IFN-γ expression in healthy BM-derived cells. We demonstrated that in co-culture experiments, IFN-γ+ AML cells modify AML-MSC gene expression and function, inducing the up-regulation of IDO1, and consequently the generation of T regulatory cells. Finally, we wondered if the transcriptome of stromal cells could be influenced by the hematopoietic-specific alterations, i.e. Dnmt3a and Asxl1 mutations, which occur early in MDS/AML patients. We found that Dnmt3a- and Asxl1-null BM cells, when transplanted in wild-type mice, induce profound and deletion-specific modifications in the transcriptome of wild-type BM stromal cells, suggesting the ability of Dnmt3a- and Asxl1-null BM cells to shape the niche. Furthermore, we compared the transcriptome of wild-type BM stromal cells, obtained from transplantation experiments, with that of MSCs isolated from low-risk MDS patients with DNMT3A and ASXL1 mutations, and we highlighted some common modifications, which could be potentially relevant for human disease and specific for DNMT3A/ASXL1 mutations. In conclusion, this thesis pointed out that there is a bi-directional cross-talk, in which stromal cells can influence malignant cells, and in turn malignant/pre-malignant cells can alter stromal cell gene expression and function. Both mechanisms could potentially contribute to the pathogenesis of myeloid malignancies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The investigation of the mechanisms lying behind the (photo-)chemical processes is fundamental to address and improve the design of new organic functional materials. In many cases, dynamics simulations represent the only tool to capture the system properties emerging from complex interactions between many molecules. Despite the outstanding progresses in calculation power, the only way to carry out such computational studies is to introduce several approximations with respect to a fully quantum mechanical (QM) description. This thesis presents an approach that combines QM calculations with a classical Molecular Dynamics (MD) approach by means of accurate QM-derived force fields. It is based on a careful selection of the most relevant molecular degrees of freedom, whose potential energy surface is calculated at QM level and reproduced by the analytic functions of the force field, as well as by an accurate tuning of the approximations introduced in the model of the process to be simulated. This is made possible by some tools developed purposely, that allow to obtain and test the FF parameters through comparison with the QM frequencies and normal modes. These tools were applied in the modelling of three processes: the npi* photoisomerisation of azobenzene, where the FF description was extended to the excited state too and the non-adiabatic events were treated stochastically with Tully fewest switching algorithm; the charge separation in donors-acceptors bulk heterojunction organic solar cells, where a tight-binding Hamiltonian was carefully parametrised and solved by means of a code, also written specifically; the effect of the protonation state on the photoisomerisation quantum yield of the aryl-azoimidazolium unit of the axle molecule of a rotaxane molecular shuttle. In each case, the QM-based MD models that were specifically developed gave noteworthy information about the investigated phenomena, proving to be a fundamental key for a deeper comprehension of several experimental evidences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, one of the most ambitious challenges in soft robotics is the development of actuators capable to achieve performance comparable to skeletal muscles. Scientists have been working for decades, inspired by Nature, to mimic both their complex structure and their perfectly balanced features in terms of linear contraction, force-to-weight ratio, scalability and flexibility. The present Thesis, contextualized within the FET open Horizon 2020 project MAGNIFY, aims to develop a new family of innovative flexible actuators in the field of soft-robotics. For the realization of this actuator, a biomimetic approach has been chosen, drawing inspiration from skeletal muscle. Their hierarchical fibrous structure was mimicked employing the electrospinning technique, while the contraction of sarcomeres was designed employing chains of molecular machines, supramolecular systems capable of performing movements useful to execute specific tasks. The first part deals with the design and production of the basic unit of the artificial muscle, the artificial myofibril, consisting in a novel electrospun core-shell nanofiber, with elastomeric shell and electrically conductive core, coupled with a conductive coating, for the realization of which numerous strategies have been investigated. The second part deals instead with the integration of molecular machines (provided by the project partners) inside these artificial myofibrils, preceded by the study of several model molecules, aimed at simulating the presence of these molecular machines during the initial phases of the project. The last part concerns the realization of an electrospun multiscale hierarchical structure, aimed at reproducing the entire muscle morphology and fibrous organization. These research will be joined together in the near future like the pieces of a puzzle, recreating the artificial actuator most similar to biological muscle ever made, composed of millions of artificial myofibrils, electrically activated in which the nano-scale movement of molecular machines will be incrementally amplified to the macro-scale contraction of the artificial muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PEMF are a medical and non-invasive therapy successfully used for clinical treatments of bone disease, due to the piezoelectric effect that improve bone mass and density, by the stimulation of osteoblastogenesis, with modulation of calcium storages and mineral metabolism. PEMF enhance tissue oxygenation, microcirculation and angiogenesis, in rats and cells erythrocytes, in cells-free assay. Such responses could be caused by a modulation of nitric oxide signal and interaction between PEMF and Ca2+/NO/cGMP/PKG signal. PEMF improve blood flow velocity of smallest vein without changing their diameter. PEMF therapy helpful in patients with diabetes, due to increased microcirculation trough enhance capillary blood velocity and diameter. We investigated the influence of stimulation on muscular activity, tissue oxygenation and pulmonary VO2, during exercise, on different intensity, as heavy or moderate, different subjects, as a athlete or sedentary, and different sport activity, as a cycling or weightlifting. In athletes, we observed a tendency for a greater change and a faster kinetic of HHb concentration. PEMF increased the velocity and the quantity of muscle O2 available, leading to accelerate the HHb kinetics. Stimulation induced a bulk muscle O2 availability and a greater muscle O2 extraction, leading to a reduced time delay of the HHb slow component. Stimulation increased the amplitude of muscle activity under different conditions, likely caused by the effect of PEMF on contraction mechanism of muscular fibers, by the change of membrane permeability and Ca2+ channel conduction. In athletes, we observed an increase of overall activity during warm-up. In sedentary people, stimulation increased the magnitude of muscle activity during moderate constant-load exercise and warm-up. In athletes and weightlifters, stimulation caused an increase of blood lactate concentration during exercise, confirming a possible influence of stimulation on muscle activity and on glycolytic metabolism of type-II muscular fibers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aedes albopictus is a vector able to transmit several arboviruses. Due to its high impact on human health, it is important to develop an efficient control strategy for this pest. Nowadays, control based on chemical insecticides is limited by the number of available active principles and the occurrence of resistance. A valuable alternative to the conventional control strategies is the sterile insect technique (SIT) which relies on releasing sterile males of the target insect. Mating between wild females and sterile males results in no viable offspring. A crucial aspect of SIT is the production of a large number of sterile males with a low presence of females that can bite and transmit viruses. The present thesis aimed to find, implement and study the most reliable mechanical sex sorter and protocol to implement male productivity and reduce female contamination. In addition, I evaluated different variables and sorting protocols to enable female recovery for breeding purposes. Furthermore, I studied the creation of a hyper-protandric strain potentially able to produce only males. I also assessed the integration of artificial intelligence with an optical unit to identify sexes at the adult stage. All these applications helped to realise a mass production model in Italy with a potential weekly production of 1 million males. Moreover, I studied and applied for aerial sterile male release in an urban environment. This technology could allow the release of males in a wide area, overcoming environmental and urban obstacles. However, the development and application of drone technologies in a metropolitan area close to airports, such as in Bologna area, must fit specific requirements. Lastly, at Réunion Island, during a Short Term Scientific Mission France (AIM-COST Action), Indian Ocean, I studied the Boosted SIT application. Coating sterile males with Pyriproxyfen may help spread the insecticide into the larval breeding sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteosarcoma (OS) and Ewing sarcoma (EWS) are the two most frequent primary bone tumors, in which metastases remain the most relevant adverse prognostic factor. Lamin A is the main constituent of the nuclear lamina, with a fundamental role in maintaining the connection between nucleus and cytoskeleton (through LINC complex proteins interactions), and its alterations can be implicated in tumor progression. We investigated how nucleo-cytoskeleton dynamics is influenced by lamin A modulation in OS and EWS, demonstrating that both these cancer models had low levels of lamin A, which are linked to a significantly more marked nuclear misshaping. In our in vitro studies, reduced levels of lamin A promoted migratory abilities in these tumors. Moreover, these findings were corroborated by gene expression analyses on EWS patient samples, showing that LMNA levels were significantly lower in metastatic lesions compared to primary tumors and that patients with low LMNA had a significant worse overall survival. We also found that LMNA expression significantly impaired EWS metastases formation in vivo. We demonstrated that low lamin A expression was linked to a severe mislocalization of LINC complex proteins, thus disrupting nucleo-cytoskeleton interactions, with a corresponding gain in malignant properties, which resulted in increased invasiveness. Lamin A overexpression or its accumulation by a statin-based pharmacological treatment allowed us to reconstitute a functional nucleo-cytoskeleton interplay, which resulted in significant downmodulation of ROCK2 and YAP, two crucial drivers of EWS aggressiveness. Our study demonstrated that lamin A is a favorable mediator of nuclear shape stability in bone sarcomas, and its modulation rescues LINC complex protein localization and regulates mechano-signaling pathways, thus promoting a less aggressive cancer phenotype. We also identified statins, already employed in clinical practice, as a tool capable to increase lamin A levels, and to reconstitute functional nucleo-cytoskeletal dynamics, resulting in reduced cellular migration.