7 resultados para Murine B-cells
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Two major types of B cells, the antibody-producing cells of the immune system, are classically distinguished in the spleen: marginal zone (MZ) and follicular (FO). In addition, FO B cells are subdivided into FO I and FO II cells, based on the amount of surface IgM. MZ B cells, which surround the splenic follicles, rapidly produce IgM in response to blood-borne pathogens without T cell help, while T cell-dependent production of high affinity, isotype-switched antibodies is ascribed to FO I cells. The significance of FO II cells and the mechanism underlying B cell fate choices are unclear. We showed that FO II cells express more Sca1 than FO I cells and originate from a distinct B cell development program, marked by high expression of Sca1. MZ B cells can derive from the “canonical” Sca1lo pathways, as well as from the Sca1hi program, although the Sca1hi program shows a stronger MZ bias than the Sca1lo program, and extensive phenotypic plasticity exists between MZ and FO II, but not between MZ and FO I cells. The Sca1hi program is induced by hematopoietic stress and generates B cells with an Igλ-enriched repertoire. In aged mice, the canonical B cell development pathway is impaired, while the Sca1hi program is increased. Furthermore, we showed that a population of unknown function, defined as Lin-c-kit+Sca1+ (LSK-), contains early lymphoid precursors, with primarily B cell potential in vivo. Our data suggest that LSK- cells may represent a distinct precursor for the Sca1hi program in the bone marrow.
Resumo:
Objectives: Human Herpesvirus 8 (HHV-8) is the etiological agent of Kaposi’s Sarcoma (KS) and it is also associated with two B cell lymphoproliferative diseases: primary effusion lymphoma (PEL), and the plasmablastic form of multicentric Castelman’s disease (MCD). HHV-8 establishes persistent infection in the host with tropism for multiple cell types. In KS patients, the virus is found in tumor-spindle cells, peripheral blood monocytes, endothelial progenitor circulating cells, T and B lymphocytes. Peripheral B cells represent one of the major virus reservoir, but the consequences of HHV-8 infection of these cells have been poorly characterized. Therefore, in this study the frequency, the immunophenotypic profile and the functional activity of different peripheral B cell subsets in patients with classic KS (cKS) was analysed in order to identify potential alterations of these cells. The classic variant of KS is ideal to perform such studies, as it lacks confounding factors such as HIV or EBV infection and immunosuppression. Methods: Whole-blood samples from patients with the classical form of KS (cKS) (n=62) and healthy age and sex-matched seronegative controls (HSN) (n=43) were analyzed by multiparametric flow-cytometry to determine the frequency of B cells and their subpopulations, as well as their surface expression of immunoglobulins and activation markers. Results: The frequency of circulating B cells was significantly higher in cKS patients than in controls. In particular, the analysis of the B cell subsets revealed a higher frequency of naïve B cells (CD19+CD27-), among which transitional CD19+CD38highCD5+ and pre-naïve (CD27-CD38intCD5+ ) B cells demonstrated an expansion. Memory B cells (CD19+CD27+) did not differ between the two study groups, except from a higher frequency of CD19+CD27+IgM+IgD+ B cells, the typical phenotype of marginal zone (MZ) B cells, in cKS patients. The characterization of membrane surface activation markers showed lower levels of the activation marker HLA-DR only on CD27- B cells, while CD80 and CD86 were less represented in all the the B cells from cKS patients. Moreover, B cells from cKS patients were smaller and with less granules than the ones from controls. Conclusion: Taken together, these results clearly indicate that circulating B cells are altered in patients with cKS, showing an expansion of the immature phenotypes. These B cell alterations may be due to an indirect viral effect rather than to a direct one: the cytokines expressed in the microenvironment typical of cKS may cause a faster release of immature cells from the bone marrow and a lower grade of peripheral differentiation, as already suggested for other chronic viral infections such as HIV and HCV. Further studies will be necessary to understand how these alterations contribute to the pathogenesis of KS and, eventually, to the different clinical evolution of the disease.
Resumo:
La diagnosi di linfoma non Hodgkin B della zona marginale si basa su criteri morfologici e sulla sostanziale negatività per marcatori immunoistochimici espressi in altri sottotipi di linfoma B. L’ obiettivo di questo lavoro è stato, quindi, quello di ricercare una molecola specifica associata ai linfomi della zona marginale. Materiali e Metodi. Sono stati esaminati 2.104 linfomi periferici di entità nosologia eterogenea mediante un anticorpo monoclonale, diretto contro la molecola IRTA1, che riconosce la zona marginale nei tessuti linfoidi umani. Risultati. Si è riscontrata espressione di IRTA1 nel 93% dei linfomi della zona marginale ad insorgenza extranodale e nel 74% di quelli primitivi linfonodali suggerendo la possibilità che questi linfomi possano originare dalle cellule perifollicolari o monocitoidi IRTA1+ riscontrabili nei linfonodi reattivi. La valutazione immunoistochimica mediante doppia colorazione (IRTA1/bcl6), ha inoltre dimostrato come vi sia una modulazione fenotipica nelle cellule marginali neoplastiche nel momento in cui esse colonizzano i follicoli linfoidi e durante la loro circolazione nei centri germinativi. Le cellule marginali neoplastiche che differenziano in senso plasmacellulare perdono l’ espressione di IRTA1 Discussione. In conclusione, tali evidenze hanno permesso di ampliare la conoscenza sulla biologia dei linfomi marginali e sottolineano come IRTA1 sia il primo marcatore diagnostico positivo per queste neoplasie.
Resumo:
The existence of Multiple Myeloma Stem cells (MMSCs)is supposed to be one of the major causes of MM drug-resistance. However, very little is known about the molecular characteristics of MMSCs, even if some studies suggested that these cells resembles the memory B cells. In order to molecularly characterize MMSCs, we isolated the 138+138- population. For each cell fraction we performed a VDJ rearrangement analysis. The complete set of aberrations were performed by SNP Array 6.0 and HG-U133 Plus 2.0 microarray analyses (Affymetrix). The VDJ rearrangement analyses confirmed the clonal relationship between the 138+ clone and the immature clone. Both BM and PBL 138+ clones showed exactly the same genomic macroalterations. In the BM and PBL 138-19+27+ cell fractions several micro-alterations (range: 1-350 Kb) unique of the memory B cells clone were highlighted. Any micro-alterations detected were located out of any genomic variants region and are presumably associated to the MM pathogenesis, as confirmed by the presence of KRAS, WWOX and XIAP genes among the amplified regions. To get insight into the biology of the clonotypic B cell population, we compared the gene expression profile of 8 MM B cells samples 5 donor B cells vs, thus showing a differential expression of 11480 probes (p-value: <0,05). Among the self-renewal mechanisms, we observed the down-regulation of Hedgehog pathway and the iperactivation of Notch and Wnt signaling. Moreover, these immature cells showed a particular phenotype correlated to resistance to proteasome inhibitors (IRE1α-XBP1: -18.0; -19.96. P<0,05). Data suggested that the MM 138+ clone might resume the end of the complex process of myelomagenesis, whereas the memory B cells have some intriguing micro-alterations and a specific transcriptional program, supporting the idea that these post germinal center cells might be involved in the transforming event that originate and sustain the neoplastic clone.
Resumo:
Rhabdomyosarcoma is the most common soft tissue sarcoma of childhood. The aim of this study was to identify molecular events involved in rhabdomyosarcoma onset for the development of new therapeutic approaches against specific molecular targets. BALB-p53neu mice develop pelvic rhabdomyosarcoma and combines the activation of HER-2/neu oncogene with the inactivation of an allele of p53 oncosuppressor gene. Gene expression profiling led to the identification of genes potentially involved in rhabdomyosarcoma genesis and therefore of candidate targets. The pattern of expression of p53, HER-2/neu, CDKN2A/p19ARF and IGF-2 suggested that these alterations might be involved in gender-, site- and strain-specific development of rhabdomyosarcoma. Other genes such as CDKN1A/p21 might be involved. The role of IGF-2, CDKN2A/p19ARF and CDKN1A/p21 in tumor growth was investigated with siRNA in murine rhabdomyosarcoma cells. Silencing of p19ARF and p21 induced inhibition of growth and of migration ability, indicating a possible pro-tumor and pro-metastatic role in rhabdomyosarcoma in absence of p53. In addition the autocrine IGF-2/IGF-1R loop found in early phases of cancer progression strengthens its key role in sustaining rhabdomyosarcoma growth. As rhabdomyosarcoma displays defective myogenic differentiation, a therapeutic approach aimed at enhancing myogenic differentiation of rhabdomyosarcoma cells. Forced expression of myogenin was able to restore myogenic differentiation, significantly reduced cell motility and impaired tumor growth and metastatic spread. IL-4 treatment increased rhabdomyosarcoma cell growth, decreased myogenin expression and promoted migration of cells lacking myogenin. Another approach was based on small kinase inhibitors. Agents specifically targeting members of the HER family (Lapatinib), of the IGF system (NVP-AEW541) or downstream signal transducers (NVP-BEZ235) were investigated in vitro in human rhabdomyosarcoma cell lines as therapeutic anti-tumor and anti-metastatic tools. The major effects were obtained with NVP-BEZ235 treatment that was able to strongly inhibit cell growth in vitro and showed anti-metastatic effects in vivo.
Resumo:
The aims of this work were to investigate the role of nuclear Phospholipase C beta 1 (PI-PLCβ1) in human and mouse cell lines and to identify new binding partners of nuclear PI-PLCβ1 to further understand the functional network in which the enzyme acts. The intracellular distribution of PI-PLCβ1 was further investigated in human leukaemia cell lines (NB4, HL60, THP1, CEM, Jurkat, K562). With the exception of HL60, a high endogenous level of PI-PLCβ1 was detected in purified nuclei in each of the cell lines. We found that also in Ba/F3 pro-B cells overexpressing PI-PLCβ1b the protein localize within the nucleus. Although our data demonstrated that PI-PLCβ1b was not involved in cell proliferation and IGF-1 response as shown in other cell lines (FELC and Swiss 3T3), there was an effect on apoptosis. Activation of early apoptotic markers caspase-3 and PARP was delayed in PI-PLCβ1b overexpressing Ba/F3 cells treated with 5 gr/ml mitomycin C for 24h. We performed an antibody-specific immunoprecipitation on nuclear lysates from FELC-PLCβ1b cells. Mass spectrometry analysis (nano-ESI-Q-TOF) of co-immunoprecipitated proteins allowed for identification of 92 potential nuclear PI-PLCβ1b interactors. Among these, several already documented PI-PLCβ1b interacting partners (Srp20, LaminB, EF1α2) were identified, further validating our data. All the identified proteins were nuclear, mostly localized within the nuclear speckles. This evidence is particularly relevant as PI-PLCβ1 is known to localize in the same domains. Many of the identified proteins are involved in cell cycle, proliferation and transcriptional control. In particular, many of the proteins are components of the spliceosome multi-complex, strengthening the idea that PI-PLCβ1b is involved in mRNA processing and maturation. Future work will aim to better characterize the regulatory role of PI-PLCβ1b in mRNA splicing.
Resumo:
Ribosome-inactivating proteins (RIPs) are a family of plant toxic enzymes that permanently damage ribosomes and possibly other cellular substrates, thus causing cell death involving different and still not completely understood pathways. The high cytotoxic activity showed by many RIPs makes them ideal candidates for the production of immunotoxins (ITs), chimeric proteins designed for the selective elimination of unwanted or malignant cells. Saporin-S6, a type 1 RIP extracted from Saponaria officinalis L. seeds, has been extensively employed to construct anticancer conjugates because of its high enzymatic activity, stability and resistance to conjugation procedures, resulting in the efficient killing of target cells. Here we investigated the anticancer properties of two saporin-based ITs, anti-CD20 RTX/S6 and anti-CD22 OM124/S6, designed for the experimental treatment of B-cell NHLs. Both ITs showed high cytotoxicity towards CD20-positive B-cells, and their antitumor efficacy was enhanced synergistically by a combined treatment with proteasome inhibitors or fludarabine. Furthermore, the two ITs showed differencies in potency and ability to activate effector caspases, and a different behavior in the presence of the ROS scavenger catalase. Taken together, these results suggest that the different carriers employed to target saporin might influence saporin intracellular routing and saporin-induced cell death mechanisms. We also investigated the early cellular response to stenodactylin, a recently discovered highly toxic type 2 RIP representing an interesting candidate for the design and production of a new IT for the experimental treatment of cancer.