6 resultados para Multivariate risk model
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
La sintomatologia ansiosa materna nel periodo prenatale risulta influire negativamente non sullo stato materno ma anche sul successivo sviluppo infantile, Tuttavia, sono limitati gli studi che hanno considerato lo specifico contributo dei disturbi d’ansia nel periodo prenatale. L’obiettivo generale dello studio è quello di indagare nel primo periodo post partum la relazione tra psicopatologia ansiosa materna e: temperamento e sviluppo neonatale, qualità del caregiving materno e dei pattern interattivi madre-bambino. 138 donne sono state intervistate utilizzando SCID-I (First et al., 1997) durante il terzo trimestre di gravidanza. 31 donne (22,5%) presentano disturbo d’ansia nel periodo prenatale. A 1 mese post partum il comportamento del neonato è stato valutato mediante NBAS (Brazelton, Nugent, 1995), mentre le madri hanno compilato MBAS (Brazelton, Nugent, 1995). A 3 mesi postpartum, una sequenza interattiva madre-bambino è stata videoregistrata e codificata utilizzando GRS (Murray et al., 1996). La procedura dello Stranger Episode (Murray et al., 2007) è stata utilizzata per osservare i pattern interattivi materni e infantili nell’interazione con una persona estranea. I neonati di madri con disturbo d’ansia manifestano alle NBAS minori capacità a livello di organizzazione di stati comportamentali, minori capacità attentive e di autoregolazione. Le madri ansiose si percepiscono significativamente meno sicure nell’occuparsi di loro, valutando i propri figli maggiormente instabili e irregolari. Nell’interazione face to face, esse mostrano comportamenti significativamente meno sensibilI, risultando meno coinvolte attivamente con il proprio bambino. Durante lo Stranger Episode, le madri con fobia sociale presentano maggiori livelli di ansia e incoraggiando in modo significativamente inferiore l’interazione del bambino con l’estraneo. I risultati sottolineano l’importanza di valutare in epoca prenatale la psicopatologia ansiosa materna. Le evidenze confermano la rilevanza che può assumere un modello multifattoriale di rischio in cui i disturbi d’ansia prenatali e la qualità del caregiving materno possono agire in modo sinergico nell’influire sugli esiti infantili.
Resumo:
Multiple Myeloma (MM) is a hematologic cancer with heterogeneous and complex genomic landscape, where Copy Number Alterations (CNAs) play a key role in the disease's pathogenesis and prognosis. It is of biological and clinical interest to study the temporal occurrence of early alterations, as they play a disease "driver" function by deregulating key tumor pathways. This study presents an innovative bioinformatic tools suite created for harmonizing and tracing the origin of CNAs throughout the evolutionary history of MM. To this aim, large cohorts of newly-diagnosed MM (NDMM, N=1582) and Smoldering-MM (SMM, N=282) were aggregated. The tools developed in this study enable the harmonization of CNAs as obtained from different genomic platforms in such a way that a high statistical power can be obtained. By doing so, the high numerosity of those cohorts was harnessed for the identification of novel genes characterized as "driver" (NFKB2, NOTCH2, MAX, EVI5 and MYC-ME2-enhancer), and the generation of an innovative timing model, implemented with a statistical method to introduce confidence intervals in the CNAs-calls. By applying this model on both NDMM and SMM cohorts, it was possible to identify specific CNAs (1q(CKS1B)amp, 13q(RB1)del, 11q(CCND1)amp and 14q(MAX)del) and categorize them as "early"/ "driver" events. A high level of precision was guaranteed by the narrow confidence intervals in the timing estimates. These CNAs were proposed as critical MM alterations, which play a foundational role in the evolutionary history of both SMM and NDMM. Finally, a multivariate survival model was able to identify the independent genomic alterations with the greatest effect on patients’ survival, including RB1-del, CKS1B-amp, MYC-amp, NOTCH2-amp and TRAF3-del/mut. In conclusion, the alterations that were identified as both "early-drivers” and correlated with patients’ survival were proposed as biomarkers that, if included in wider survival models, could provide a better disease stratification and an improved prognosis definition.
Resumo:
Atrial fibrillation is associated with a five-fold increase in the risk of cerebrovascular events,being responsible of 15-18% of all strokes.The morphological and functional remodelling of the left atrium caused by atrial fibrillation favours blood stasis and, consequently, stroke risk. In this context, several clinical studies suggest that stroke risk stratification could be improved by using haemodynamic information on the left atrium (LA) and the left atrial appendage (LAA). The goal of this study was to develop a personalized computational fluid-dynamics (CFD) model of the left atrium which could clarify the haemodynamic implications of atrial fibrillation on a patient specific basis. The developed CFD model was first applied to better understand the role of LAA in stroke risk. Infact, the interplay of the LAA geometric parameters such as LAA length, tortuosity, surface area and volume with the fluid-dynamics parameters and the effects of the LAA closure have not been investigated. Results demonstrated the capabilities of the CFD model to reproduce the real physiological behaviour of the blood flow dynamics inside the LA and the LAA. Finally, we determined that the fluid-dynamics parameters enhanced in this research project could be used as new quantitative indexes to describe the different types of AF and open new scenarios for the patient-specific stroke risk stratification.
Resumo:
Alzheimer's disease (AD) is the most common neurodegenerative disease in elderly. Donepezil is the first-line drug used for AD. In section one, the experimental activity was oriented to evaluate and characterize molecular and cellular mechanisms that contribute to neurodegeneration induced by the Aβ1-42 oligomers (Aβ1-42O) and potential neuroprotective effects of the hybrids feruloyl-donepezil compound called PQM130. The effects of PQM130 were compared to donepezil in a murine AD model, obtained by intracerebroventricular (i.c.v.) injection of Aβ1-42O. The intraperitoneal administration of PQM130 (0.5-1 mg/kg) after i.c.v. Aβ1-42O injection improved learning and memory, protecting mice against spatial cognition decline. Moreover, it reduced oxidative stress, neuroinflammation and neuronal apoptosis, induced cell survival and protein synthesis in mice hippocampus. PQM130 modulated different pathways than donepezil, and it is more effective in counteracting Aβ1-42O damage. The section two of the experimental activity was focused on studying a loss of function variants of ABCA7. GWA studies identified mutations in the ABCA7 gene as a risk factor for AD. The mechanism through which ABCA7 contributes to AD is not clear. ABCA7 regulates lipid metabolism and critically controls phagocytic function. To investigate ABCA7 functions, CRISPR/Cas9 technology was used to engineer human iPSCs and to carry the genetic variant Y622*, which results in a premature stop codon, causing ABCA7 loss-of-function. From iPSCs, astrocytes were generated. This study revealed the effects of ABCA7 loss in astrocytes. ABCA7 Y622* mutation induced dysfunctional endocytic trafficking, impairing Aβ clearance, lipid dysregulation and cell homeostasis disruption, alterations that could contribute to AD. Though further studies are needed to confirm the PQM130 neuroprotective role and ABCA7 function in AD, the provided results showed a better understanding of AD pathophysiology, a new therapeutic approach to treat AD, and illustrated an innovative methodology for studying the disease.
Resumo:
The thesis deals with the problem of Model Selection (MS) motivated by information and prediction theory, focusing on parametric time series (TS) models. The main contribution of the thesis is the extension to the multivariate case of the Misspecification-Resistant Information Criterion (MRIC), a criterion introduced recently that solves Akaike’s original research problem posed 50 years ago, which led to the definition of the AIC. The importance of MS is witnessed by the huge amount of literature devoted to it and published in scientific journals of many different disciplines. Despite such a widespread treatment, the contributions that adopt a mathematically rigorous approach are not so numerous and one of the aims of this project is to review and assess them. Chapter 2 discusses methodological aspects of MS from information theory. Information criteria (IC) for the i.i.d. setting are surveyed along with their asymptotic properties; and the cases of small samples, misspecification, further estimators. Chapter 3 surveys criteria for TS. IC and prediction criteria are considered for: univariate models (AR, ARMA) in the time and frequency domain, parametric multivariate (VARMA, VAR); nonparametric nonlinear (NAR); and high-dimensional models. The MRIC answers Akaike’s original question on efficient criteria, for possibly-misspecified (PM) univariate TS models in multi-step prediction with high-dimensional data and nonlinear models. Chapter 4 extends the MRIC to PM multivariate TS models for multi-step prediction introducing the Vectorial MRIC (VMRIC). We show that the VMRIC is asymptotically efficient by proving the decomposition of the MSPE matrix and the consistency of its Method-of-Moments Estimator (MoME), for Least Squares multi-step prediction with univariate regressor. Chapter 5 extends the VMRIC to the general multiple regressor case, by showing that the MSPE matrix decomposition holds, obtaining consistency for its MoME, and proving its efficiency. The chapter concludes with a digression on the conditions for PM VARX models.
Resumo:
Background There is a wide variation of recurrence risk of Non-small-cell lung cancer (NSCLC) within the same Tumor Node Metastasis (TNM) stage, suggesting that other parameters are involved in determining this probability. Radiomics allows extraction of quantitative information from images that can be used for clinical purposes. The primary objective of this study is to develop a radiomic prognostic model that predicts a 3 year disease free-survival (DFS) of resected Early Stage (ES) NSCLC patients. Material and Methods 56 pre-surgery non contrast Computed Tomography (CT) scans were retrieved from the PACS of our institution and anonymized. Then they were automatically segmented with an open access deep learning pipeline and reviewed by an experienced radiologist to obtain 3D masks of the NSCLC. Images and masks underwent to resampling normalization and discretization. From the masks hundreds Radiomic Features (RF) were extracted using Py-Radiomics. Hence, RF were reduced to select the most representative features. The remaining RF were used in combination with Clinical parameters to build a DFS prediction model using Leave-one-out cross-validation (LOOCV) with Random Forest. Results and Conclusion A poor agreement between the radiologist and the automatic segmentation algorithm (DICE score of 0.37) was found. Therefore, another experienced radiologist manually segmented the lesions and only stable and reproducible RF were kept. 50 RF demonstrated a high correlation with the DFS but only one was confirmed when clinicopathological covariates were added: Busyness a Neighbouring Gray Tone Difference Matrix (HR 9.610). 16 clinical variables (which comprised TNM) were used to build the LOOCV model demonstrating a higher Area Under the Curve (AUC) when RF were included in the analysis (0.67 vs 0.60) but the difference was not statistically significant (p=0,5147).