3 resultados para Multivariate Statistics

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fall of the Berlin Wall opened the way for a reform path – the transition process – which accompanied ten former Socialist countries in Central and South Eastern Europe to knock at the EU doors. By the way, at the time of the EU membership several economic and structural weaknesses remained. A tendency towards convergence between the new Member States (NMS) and the EU average income level emerged, together with a spread of inequality at the sub-regional level, mainly driven by the backwardness of the agricultural and rural areas. Several progresses were made in evaluating the policies for rural areas, but a shared definition of rurality is still missing. Numerous indicators were calculated for assessing the effectiveness of the Common Agricultural Policy and Rural Development Policy. Previous analysis on the Central and Eastern European countries found that the characteristics of the most backward areas were insufficiently addressed by the policies enacted; the low data availability and accountability at a sub-regional level, and the deficiencies in institutional planning and implementation represented an obstacle for targeting policies and payments. The next pages aim at providing a basis for understanding the connections between the peculiarities of the transition process, the current development performance of NMS and the EU role, with particular attention to the agricultural and rural areas. Applying a mixed methodological approach (multivariate statistics, non-parametric methods, spatial econometrics), this study contributes to the identification of rural areas and to the analysis of the changes occurred during the EU membership in Hungary, assessing the effect of CAP introduction and its contribution to the convergence of the Hungarian agricultural and rural. The author believes that more targeted – and therefore efficient – policies for agricultural and rural areas require a deeper knowledge of their structural and dynamic characteristics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analysts, politicians and international players from all over the world look at China as one of the most powerful countries on the international scenario, and as a country whose economic development can significantly impact on the economies of the rest of the world. However many aspects of this country have still to be investigated. First the still fundamental role played by Chinese rural areas for the general development of the country from a political, economic and social point of view. In particular, the way in which the rural areas have influenced the social stability of the whole country has been widely discussed due to their strict relationship with the urban areas where most people from the countryside emigrate searching for a job and a better life. In recent years many studies have mostly focused on the urbanization phenomenon with little interest in the living conditions in rural areas and in the deep changes which have occurred in some, mainly agricultural provinces. An analysis of the level of infrastructure is one of the main aspects which highlights the principal differences in terms of living conditions between rural and urban areas. In this thesis, I first carried out the analysis through the multivariate statistics approach (Principal Component Analysis and Cluster Analysis) in order to define the new map of rural areas based on the analysis of living conditions. In the second part I elaborated an index (Living Conditions Index) through the Fuzzy Expert/Inference System. Finally I compared this index (LCI) to the results obtained from the cluster analysis drawing geographic maps. The data source is the second national agricultural census of China carried out in 2006. In particular, I analysed the data refer to villages but aggregated at province level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are only a few insights concerning the influence that agronomic and management variability may have on superficial scald (SS) in pears. Abate Fétel pears were picked during three seasons (2018, 2019 and 2020) from thirty commercial orchards in the Emilia Romagna region, Italy. Using a multivariate statistical approach, high heterogeneity between farms for SS development after cold storage with regular atmosphere was demonstrated. Indeed, some factors seem to affect SS in all growing seasons: high yields, soil texture, improper irrigation and Nitrogen management, use of plant growth regulators, late harvest, precipitations, Calcium and cow manure, presence of nets, orchard age, training system and rootstock. Afterwards, we explored the spatio/temporal variability of fruit attributes in two pear orchards. Environmental and physiological spatial variables were recorded by a portable RTK GPS. High spatial variability of the SS index was observed. Through a geostatistical approach, some characteristics, including soil electrical conductivity and fruit size, have been shown to be negatively correlated with SS. Moreover, regression tree analyses were applied suggesting the presence of threshold values of antioxidant capacity, total phenolic content, and acidity against SS. High pulp firmness and IAD values before storage, denoting a more immature fruit, appeared to be correlated with low SS. Finally, a convolution neural networks (CNN) was tested to detect SS and the starch pattern index (SPI) in pears for portable device applications. Preliminary statistics showed that the model for SS had low accuracy but good precision, and the CNN for SPI denoted good performances compared to the Ctifl and Laimburg scales. The major conclusion is that Abate Fétel pears can potentially be stored in different cold rooms, according to their origin and quality features, ensuring the best fruit quality for the final consumers. These results might lead to a substantial improvement in the Italian pear industry.