5 resultados para Multiresolution Kd-trees

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Every seismic event produces seismic waves which travel throughout the Earth. Seismology is the science of interpreting measurements to derive information about the structure of the Earth. Seismic tomography is the most powerful tool for determination of 3D structure of deep Earth's interiors. Tomographic models obtained at the global and regional scales are an underlying tool for determination of geodynamical state of the Earth, showing evident correlation with other geophysical and geological characteristics. The global tomographic images of the Earth can be written as a linear combinations of basis functions from a specifically chosen set, defining the model parameterization. A number of different parameterizations are commonly seen in literature: seismic velocities in the Earth have been expressed, for example, as combinations of spherical harmonics or by means of the simpler characteristic functions of discrete cells. With this work we are interested to focus our attention on this aspect, evaluating a new type of parameterization, performed by means of wavelet functions. It is known from the classical Fourier theory that a signal can be expressed as the sum of a, possibly infinite, series of sines and cosines. This sum is often referred as a Fourier expansion. The big disadvantage of a Fourier expansion is that it has only frequency resolution and no time resolution. The Wavelet Analysis (or Wavelet Transform) is probably the most recent solution to overcome the shortcomings of Fourier analysis. The fundamental idea behind this innovative analysis is to study signal according to scale. Wavelets, in fact, are mathematical functions that cut up data into different frequency components, and then study each component with resolution matched to its scale, so they are especially useful in the analysis of non stationary process that contains multi-scale features, discontinuities and sharp strike. Wavelets are essentially used in two ways when they are applied in geophysical process or signals studies: 1) as a basis for representation or characterization of process; 2) as an integration kernel for analysis to extract information about the process. These two types of applications of wavelets in geophysical field, are object of study of this work. At the beginning we use the wavelets as basis to represent and resolve the Tomographic Inverse Problem. After a briefly introduction to seismic tomography theory, we assess the power of wavelet analysis in the representation of two different type of synthetic models; then we apply it to real data, obtaining surface wave phase velocity maps and evaluating its abilities by means of comparison with an other type of parametrization (i.e., block parametrization). For the second type of wavelet application we analyze the ability of Continuous Wavelet Transform in the spectral analysis, starting again with some synthetic tests to evaluate its sensibility and capability and then apply the same analysis to real data to obtain Local Correlation Maps between different model at same depth or between different profiles of the same model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years and thanks to innovative technological advances in supplemental lighting sources and photo-selective filters, light quality manipulation (i.e. spectral composition of sunlight) have demonstrated positive effects on plant performance in ornamentals and vegetable crops. However, this aspect has been much less studied in fruit trees due to the difficulty of conditioning the light environment of orchards. The aim of the present PhD research was to study the use of different colored nets with selective light transmission in the blue (400 – 500 nm), red (600 – 700 nm) and near infrared (700 – 1100 nm) wavelengths as a tool to the light quality management and its morphological and physiological effects in field-grown apple trees. Chapter I provides a review the current status on physiological and technological advances on light quality management in fruit trees. Chapter II shows the main effect of colored nets on morpho-anatomical (stomata density, mesophyll structure and leaf mass area index) characteristics in apple leaves. Chapter III provides an analysis about the effect of micro-environmental conditions under colored nets on leaf stomatal conductance and leaf photosynthetic capacity. Chapter IV describes a study approach to evaluate the impact of colored nets on fruit growth potential in apples. Summing up results obtained in the present PhD dissertation clearly demonstrate that light quality management through photo-selective colored nets presents an interesting potential for the manipulation of plant morphological and physiological traits in apple trees. Cover orchards with colored nets might be and alternative technology to address many of the most important challenges of modern fruit growing, such as: the need for the efficient use of natural resources (water, soil and nutrients) the reduction of environmental impacts and the mitigation of possible negative effects of global climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In two Italian sites, multiaxis trees slightly reduced primary axis length and secondary axis length of newly grafted trees, and increased the number of secondary shoots. The total length, node production, and total dry matter gain were proportional to the number of axis. Growth of both primary and secondary shoots, and dry matter accumulation, have been found to be also well related to rootstock vigour. A great variability in axillary shoot production was recorded among different environments. Grafted trees had higher primary growth, secondary axis growth, and dry matter gain than chip budded trees. Stem water potential measured in the second year after grafting was not affected by rootstocks or number of leaders. Measurements performed in New Zealand (Hawke’s Bay) during the second year after grafting revealed that both final length and growth rate of primary and secondary axis were related to the rootstock rather than to the training system. Dwarfing rootstocks reduced the number of long vegetative shoots and increased the proportion of less vigorous shoots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last years, sustainable horticulture has been increasing; however, to be successful this practice needs an efficient soil fertility management to maintain a high productivity and fruit quality standards. For this purpose composted organic materials from agri-food industry and municipal solid waste has been used as a source to replace chemical fertilizers and increase soil organic matter. To better understand the influence of compost application on soil fertility and plant growth, we carried out a study comparing organic and mineral nitrogen (N) fertilization in micro propagated plants, potted trees and commercial peach orchard with these aims: 1. evaluation of tree development, CO2 fixation and carbon partition to the different organs of two-years-old potted peach trees. 2. Determination of soil N concentration and nitrate-N effect on plant growth and root oxidative stress of micro propagated plant after increasing rates of N applications. 3. Assessment of soil chemical and biological fertility, tree growth and yield and fruit quality in a commercial orchard. The addition of compost at high rate was effective in increasing CO2 fixation, promoting root growth, shoot and fruit biomass. Furthermore, organic fertilizers influenced C partitioning, favoring C accumulation in roots, wood and fruits. The higher CO2 fixation was the result of a larger tree leaf area, rather than an increase in leaf photosynthetic efficiency, showing a stimulation of plant growth by application of compost. High concentrations of compost increased total soil N concentration, but were not effective in increasing nitrate-N soil concentration; in contrast mineral-N applications increased linearly soil nitrate-N, even at the lowest rate tested. Soil nitrate-N concentration influenced positively plant growth at low rate (60- 80 mg kg-1), whereas at high concentrations showed negative effects. In this trial, the decrease of root growth, as a response to excessive nitrate-N soil concentration, was not anticipated by root oxidative stress. Continuous annual applications of compost for 10 years enhanced soil organic matter content and total soil N concentration. Additionally, high rate of compost application (10 t ha-1 year-1) enhanced microbial biomass. On the other hand, different fertilizers management did not modify tree yield, but influenced fruit size and precocity index. The present data support the idea that organic fertilizers can be used successfully as a substitute of mineral fertilizers in fruit tree nutrient management, since they promote an increase of soil chemical and biological fertility, prevent excessive nitrate-N soil concentration, promote plant growth and potentially C sequestration into the soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During my three academic years, I focused on the effects of N fertilization on growth and function of plants and forest stands. The study had the dual objective of estimating the effects of atmospheric N deposition and evaluating the potential management value of N fertilization itself. In particular, the analysis took into account the changes induced in water use and intrinsic transpiration efficiency (ITE), an aspect often overlooked in world literature but of great importance especially in Mediterranean environment, where the positive effects of N fertilization may be denied by the parallel increased transpiration and exacerbated water stress.