16 resultados para Multiple-scale processing
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis explores the capabilities of heterogeneous multi-core systems, based on multiple Graphics Processing Units (GPUs) in a standard desktop framework. Multi-GPU accelerated desk side computers are an appealing alternative to other high performance computing (HPC) systems: being composed of commodity hardware components fabricated in large quantities, their price-performance ratio is unparalleled in the world of high performance computing. Essentially bringing “supercomputing to the masses”, this opens up new possibilities for application fields where investing in HPC resources had been considered unfeasible before. One of these is the field of bioelectrical imaging, a class of medical imaging technologies that occupy a low-cost niche next to million-dollar systems like functional Magnetic Resonance Imaging (fMRI). In the scope of this work, several computational challenges encountered in bioelectrical imaging are tackled with this new kind of computing resource, striving to help these methods approach their true potential. Specifically, the following main contributions were made: Firstly, a novel dual-GPU implementation of parallel triangular matrix inversion (TMI) is presented, addressing an crucial kernel in computation of multi-mesh head models of encephalographic (EEG) source localization. This includes not only a highly efficient implementation of the routine itself achieving excellent speedups versus an optimized CPU implementation, but also a novel GPU-friendly compressed storage scheme for triangular matrices. Secondly, a scalable multi-GPU solver for non-hermitian linear systems was implemented. It is integrated into a simulation environment for electrical impedance tomography (EIT) that requires frequent solution of complex systems with millions of unknowns, a task that this solution can perform within seconds. In terms of computational throughput, it outperforms not only an highly optimized multi-CPU reference, but related GPU-based work as well. Finally, a GPU-accelerated graphical EEG real-time source localization software was implemented. Thanks to acceleration, it can meet real-time requirements in unpreceeded anatomical detail running more complex localization algorithms. Additionally, a novel implementation to extract anatomical priors from static Magnetic Resonance (MR) scansions has been included.
Resumo:
This thesis deals with heterogeneous architectures in standard workstations. Heterogeneous architectures represent an appealing alternative to traditional supercomputers because they are based on commodity components fabricated in large quantities. Hence their price-performance ratio is unparalleled in the world of high performance computing (HPC). In particular, different aspects related to the performance and consumption of heterogeneous architectures have been explored. The thesis initially focuses on an efficient implementation of a parallel application, where the execution time is dominated by an high number of floating point instructions. Then the thesis touches the central problem of efficient management of power peaks in heterogeneous computing systems. Finally it discusses a memory-bounded problem, where the execution time is dominated by the memory latency. Specifically, the following main contributions have been carried out: A novel framework for the design and analysis of solar field for Central Receiver Systems (CRS) has been developed. The implementation based on desktop workstation equipped with multiple Graphics Processing Units (GPUs) is motivated by the need to have an accurate and fast simulation environment for studying mirror imperfection and non-planar geometries. Secondly, a power-aware scheduling algorithm on heterogeneous CPU-GPU architectures, based on an efficient distribution of the computing workload to the resources, has been realized. The scheduler manages the resources of several computing nodes with a view to reducing the peak power. The two main contributions of this work follow: the approach reduces the supply cost due to high peak power whilst having negligible impact on the parallelism of computational nodes. from another point of view the developed model allows designer to increase the number of cores without increasing the capacity of the power supply unit. Finally, an implementation for efficient graph exploration on reconfigurable architectures is presented. The purpose is to accelerate graph exploration, reducing the number of random memory accesses.
Resumo:
The wide diffusion of cheap, small, and portable sensors integrated in an unprecedented large variety of devices and the availability of almost ubiquitous Internet connectivity make it possible to collect an unprecedented amount of real time information about the environment we live in. These data streams, if properly and timely analyzed, can be exploited to build new intelligent and pervasive services that have the potential of improving people's quality of life in a variety of cross concerning domains such as entertainment, health-care, or energy management. The large heterogeneity of application domains, however, calls for a middleware-level infrastructure that can effectively support their different quality requirements. In this thesis we study the challenges related to the provisioning of differentiated quality-of-service (QoS) during the processing of data streams produced in pervasive environments. We analyze the trade-offs between guaranteed quality, cost, and scalability in streams distribution and processing by surveying existing state-of-the-art solutions and identifying and exploring their weaknesses. We propose an original model for QoS-centric distributed stream processing in data centers and we present Quasit, its prototype implementation offering a scalable and extensible platform that can be used by researchers to implement and validate novel QoS-enforcement mechanisms. To support our study, we also explore an original class of weaker quality guarantees that can reduce costs when application semantics do not require strict quality enforcement. We validate the effectiveness of this idea in a practical use-case scenario that investigates partial fault-tolerance policies in stream processing by performing a large experimental study on the prototype of our novel LAAR dynamic replication technique. Our modeling, prototyping, and experimental work demonstrates that, by providing data distribution and processing middleware with application-level knowledge of the different quality requirements associated to different pervasive data flows, it is possible to improve system scalability while reducing costs.
Resumo:
The continuous increase of genome sequencing projects produced a huge amount of data in the last 10 years: currently more than 600 prokaryotic and 80 eukaryotic genomes are fully sequenced and publically available. However the sole sequencing process of a genome is able to determine just raw nucleotide sequences. This is only the first step of the genome annotation process that will deal with the issue of assigning biological information to each sequence. The annotation process is done at each different level of the biological information processing mechanism, from DNA to protein, and cannot be accomplished only by in vitro analysis procedures resulting extremely expensive and time consuming when applied at a this large scale level. Thus, in silico methods need to be used to accomplish the task. The aim of this work was the implementation of predictive computational methods to allow a fast, reliable, and automated annotation of genomes and proteins starting from aminoacidic sequences. The first part of the work was focused on the implementation of a new machine learning based method for the prediction of the subcellular localization of soluble eukaryotic proteins. The method is called BaCelLo, and was developed in 2006. The main peculiarity of the method is to be independent from biases present in the training dataset, which causes the over‐prediction of the most represented examples in all the other available predictors developed so far. This important result was achieved by a modification, made by myself, to the standard Support Vector Machine (SVM) algorithm with the creation of the so called Balanced SVM. BaCelLo is able to predict the most important subcellular localizations in eukaryotic cells and three, kingdom‐specific, predictors were implemented. In two extensive comparisons, carried out in 2006 and 2008, BaCelLo reported to outperform all the currently available state‐of‐the‐art methods for this prediction task. BaCelLo was subsequently used to completely annotate 5 eukaryotic genomes, by integrating it in a pipeline of predictors developed at the Bologna Biocomputing group by Dr. Pier Luigi Martelli and Dr. Piero Fariselli. An online database, called eSLDB, was developed by integrating, for each aminoacidic sequence extracted from the genome, the predicted subcellular localization merged with experimental and similarity‐based annotations. In the second part of the work a new, machine learning based, method was implemented for the prediction of GPI‐anchored proteins. Basically the method is able to efficiently predict from the raw aminoacidic sequence both the presence of the GPI‐anchor (by means of an SVM), and the position in the sequence of the post‐translational modification event, the so called ω‐site (by means of an Hidden Markov Model (HMM)). The method is called GPIPE and reported to greatly enhance the prediction performances of GPI‐anchored proteins over all the previously developed methods. GPIPE was able to predict up to 88% of the experimentally annotated GPI‐anchored proteins by maintaining a rate of false positive prediction as low as 0.1%. GPIPE was used to completely annotate 81 eukaryotic genomes, and more than 15000 putative GPI‐anchored proteins were predicted, 561 of which are found in H. sapiens. In average 1% of a proteome is predicted as GPI‐anchored. A statistical analysis was performed onto the composition of the regions surrounding the ω‐site that allowed the definition of specific aminoacidic abundances in the different considered regions. Furthermore the hypothesis that compositional biases are present among the four major eukaryotic kingdoms, proposed in literature, was tested and rejected. All the developed predictors and databases are freely available at: BaCelLo http://gpcr.biocomp.unibo.it/bacello eSLDB http://gpcr.biocomp.unibo.it/esldb GPIPE http://gpcr.biocomp.unibo.it/gpipe
Resumo:
Array seismology is an useful tool to perform a detailed investigation of the Earth’s interior. Seismic arrays by using the coherence properties of the wavefield are able to extract directivity information and to increase the ratio of the coherent signal amplitude relative to the amplitude of incoherent noise. The Double Beam Method (DBM), developed by Krüger et al. (1993, 1996), is one of the possible applications to perform a refined seismic investigation of the crust and mantle by using seismic arrays. The DBM is based on a combination of source and receiver arrays leading to a further improvement of the signal-to-noise ratio by reducing the error in the location of coherent phases. Previous DBM works have been performed for mantle and core/mantle resolution (Krüger et al., 1993; Scherbaum et al., 1997; Krüger et al., 2001). An implementation of the DBM has been presented at 2D large-scale (Italian data-set for Mw=9.3, Sumatra earthquake) and at 3D crustal-scale as proposed by Rietbrock & Scherbaum (1999), by applying the revised version of Source Scanning Algorithm (SSA; Kao & Shan, 2004). In the 2D application, the rupture front propagation in time has been computed. In 3D application, the study area (20x20x33 km3), the data-set and the source-receiver configurations are related to the KTB-1994 seismic experiment (Jost et al., 1998). We used 60 short-period seismic stations (200-Hz sampling rate, 1-Hz sensors) arranged in 9 small arrays deployed in 2 concentric rings about 1 km (A-arrays) and 5 km (B-array) radius. The coherence values of the scattering points have been computed in the crustal volume, for a finite time-window along all array stations given the hypothesized origin time and source location. The resulting images can be seen as a (relative) joint log-likelihood of any point in the subsurface that have contributed to the full set of observed seismograms.
Resumo:
A year of satellite-borne lidar CALIOP data is analyzed and statistics on occurrence and distribution of bulk properties of cirri are provided. The relationship between environmental and cloud physical parameters and the shape of the backscatter profile (BSP) is investigated. It is found that CALIOP BSP is mainly affected by cloud geometrical thickness while only minor impacts can be attributed to other quantities such as optical depth or temperature. To fit mean BSPs as functions of geometrical thickness and position within the cloud layer, polynomial functions are provided. It is demonstrated that, under realistic hypotheses, the mean BSP is linearly proportional to the IWC profile. The IWC parameterization is included into the RT-RET retrieval algorithm, that is exploited to analyze infrared radiance measurements in presence of cirrus clouds during the ECOWAR field campaign. Retrieved microphysical and optical properties of the observed cloud are used as input parameters in a forward RT simulation run over the 100-1100 cm-1 spectral interval and compared with interferometric data to test the ability of the current single scattering properties database of ice crystal to reproduce realistic optical features. Finally a global scale investigation of cirrus clouds is performed by developing a collocation algorithm that exploits satellite data from multiple sensors (AIRS, CALIOP, MODIS). The resulting data set is utilized to test a new infrared hyperspectral retrieval algorithm. Retrieval products are compared to data and in particular the cloud top height (CTH) product is considered for this purpose. A better agreement of the retrieval with the CALIOP CTH than MODIS is found, even if some cases of underestimation and overestimation are observed.
Resumo:
Several countries have acquired, over the past decades, large amounts of area covering Airborne Electromagnetic data. Contribution of airborne geophysics has dramatically increased for both groundwater resource mapping and management proving how those systems are appropriate for large-scale and efficient groundwater surveying. We start with processing and inversion of two AEM dataset from two different systems collected over the Spiritwood Valley Aquifer area, Manitoba, Canada respectively, the AeroTEM III (commissioned by the Geological Survey of Canada in 2010) and the “Full waveform VTEM” dataset, collected and tested over the same survey area, during the fall 2011. We demonstrate that in the presence of multiple datasets, either AEM and ground data, due processing, inversion, post-processing, data integration and data calibration is the proper approach capable of providing reliable and consistent resistivity models. Our approach can be of interest to many end users, ranging from Geological Surveys, Universities to Private Companies, which are often proprietary of large geophysical databases to be interpreted for geological and\or hydrogeological purposes. In this study we deeply investigate the role of integration of several complimentary types of geophysical data collected over the same survey area. We show that data integration can improve inversions, reduce ambiguity and deliver high resolution results. We further attempt to use the final, most reliable output resistivity models as a solid basis for building a knowledge-driven 3D geological voxel-based model. A voxel approach allows a quantitative understanding of the hydrogeological setting of the area, and it can be further used to estimate the aquifers volumes (i.e. potential amount of groundwater resources) as well as hydrogeological flow model prediction. In addition, we investigated the impact of an AEM dataset towards hydrogeological mapping and 3D hydrogeological modeling, comparing it to having only a ground based TEM dataset and\or to having only boreholes data.
Resumo:
Since last century, the rising interest of value-added and advanced functional materials has spurred a ceaseless development in terms of industrial processes and applications. Among the emerging technologies, thanks to their unique features and versatility in terms of supported processes, non-equilibrium plasma discharges appear as a key solvent-free, high-throughput and cost-efficient technique. Nevertheless, applied research studies are needed with the aim of addressing plasma potentialities optimizing devices and processes for future industrial applications. In this framework, the aim of this dissertation is to report on the activities carried out and the results achieved concerning the development and optimization of plasma techniques for nanomaterial synthesis and processing to be applied in the biomedical field. In the first section, the design and investigation of a plasma assisted process for the production of silver (Ag) nanostructured multilayer coatings exhibiting anti-biofilm and anti-clot properties is described. With the aim on enabling in-situ and on-demand deposition of Ag nanoparticles (NPs), the optimization of a continuous in-flight aerosol process for particle synthesis is reported. The stability and promising biological performances of deposited coatings spurred further investigation through in-vitro and in-vivo tests which results are reported and discussed. With the aim of addressing the unanswered questions and tuning NPs functionalities, the second section concerns the study of silver containing droplet conversion in a flow-through plasma reactor. The presented results, obtained combining different analysis techniques, support a formation mechanism based on droplet to particle conversion driven by plasma induced precursor reduction. Finally, the third section deals with the development of a simulative and experimental approach used to investigate the in-situ droplet evaporation inside the plasma discharge addressing the main contributions to liquid evaporation in the perspective of process industrial scale up.
Resumo:
The convergence between the recent developments in sensing technologies, data science, signal processing and advanced modelling has fostered a new paradigm to the Structural Health Monitoring (SHM) of engineered structures, which is the one based on intelligent sensors, i.e., embedded devices capable of stream processing data and/or performing structural inference in a self-contained and near-sensor manner. To efficiently exploit these intelligent sensor units for full-scale structural assessment, a joint effort is required to deal with instrumental aspects related to signal acquisition, conditioning and digitalization, and those pertaining to data management, data analytics and information sharing. In this framework, the main goal of this Thesis is to tackle the multi-faceted nature of the monitoring process, via a full-scale optimization of the hardware and software resources involved by the {SHM} system. The pursuit of this objective has required the investigation of both: i) transversal aspects common to multiple application domains at different abstraction levels (such as knowledge distillation, networking solutions, microsystem {HW} architectures), and ii) the specificities of the monitoring methodologies (vibrations, guided waves, acoustic emission monitoring). The key tools adopted in the proposed monitoring frameworks belong to the embedded signal processing field: namely, graph signal processing, compressed sensing, ARMA System Identification, digital data communication and TinyML.
Resumo:
The two-metal-ion architecture is a structural feature found in a variety of RNA processing metalloenzymes or ribozymes (RNA-based enzymes), which control the biogenesis and the metabolism of vital RNAs, including non-coding RNAs (ncRNAs). Notably, such ncRNAs are emerging as key players for the regulation of cellular homeostasis, and their altered expression has been often linked to the development of severe human pathologies, from cancer to mental disorders. Accordingly, understanding the biological processing of ncRNAs is foundational for the development of novel therapeutic strategies and tools. Here, we use state-of the-art molecular simulations, complemented with X-ray crystallography and biochemical experiments, to characterize the RNA processing cycle as catalyzed by two two-metal-ion enzymes: the group II intron ribozymes and the RNase H1. We show that multiple and diverse cations are strategically recruited at and timely released from the enzymes’ active site during catalysis. Such a controlled cations’ trafficking leads to the recursive formation and disruption of an extended two-metal ion architecture that is functional for RNA-hydrolysis – from substrate recruitment to product release. Importantly, we found that these cations’ binding sites are conserved among other RNA-processing machineries, including the human spliceosome and CRISPR-Cas systems, suggesting that an evolutionarily-converged catalytic strategy is adopted by these enzymes to process RNA molecules. Thus, our findings corroborate and sensibly extend the current knowledge of two-metal-ion enzymes, and support the design of novel drugs targeting RNA-processing metalloenzymes or ribozymes as well as the rational engineering of novel programmable gene-therapy tools.
Resumo:
The correlations between the evolution of the Super Massive Black Holes (SMBHs) and their host galaxies suggests that the SMBH accretion on sub-pc scales (active galactice nuclei, AGN) is linked to the building of the galaxy over kpc scales, through the so called AGN feedback. Most of the galaxy assembly occurs in overdense large scale structures (LSSs). AGN residing in powerful sources in LSSs, such as the proto-brightest cluster galaxies (BCGs), can affect the evolution of the surrounding intra-cluster medium (ICM) and nearby galaxies. Among distant AGN, high-redshift radio-galaxies (HzRGs) are found to be excellent BCG progenitor candidates. In this Thesis we analyze novel interferometric observations of the so-called "J1030" field centered around the z = 6.3 SDSS Quasar J1030+0524, carried out with the Atacama large (sub-)millimetre array (ALMA) and the Jansky very large array (JVLA). This field host a LSS assembling around a powerful HzRG at z = 1.7 that shows evidence of positive AGN feedback in heating the surrounding ICM and promoting star-formation in multiple galaxies at hundreds kpc distances. We report the detection of gas-rich members of the LSS, including the HzRG. We showed that the LSS is going to evolve into a local massive cluster and the HzRG is the proto-BCG. we unveiled signatures of the proto-BCG's interaction with the surrounding ICM, strengthening the positive AGN feedback scenario. From the JVLA observations of the "J1030" we extracted one of the deepest extra-galactic radio surveys to date (~12.5 uJy at 5 sigma). Exploiting the synergy with the X-ray deep survey (~500 ks) we investigated the relation of the X-ray/radio emission of a X-ray-selected sample, unveiling that the radio emission is powered by different processes (star-formation and AGN), and that AGN-driven sample is mostly composed by radio-quiet objects that display a significant X-ray/radio correlation.
Resumo:
In the last decades, Artificial Intelligence has witnessed multiple breakthroughs in deep learning. In particular, purely data-driven approaches have opened to a wide variety of successful applications due to the large availability of data. Nonetheless, the integration of prior knowledge is still required to compensate for specific issues like lack of generalization from limited data, fairness, robustness, and biases. In this thesis, we analyze the methodology of integrating knowledge into deep learning models in the field of Natural Language Processing (NLP). We start by remarking on the importance of knowledge integration. We highlight the possible shortcomings of these approaches and investigate the implications of integrating unstructured textual knowledge. We introduce Unstructured Knowledge Integration (UKI) as the process of integrating unstructured knowledge into machine learning models. We discuss UKI in the field of NLP, where knowledge is represented in a natural language format. We identify UKI as a complex process comprised of multiple sub-processes, different knowledge types, and knowledge integration properties to guarantee. We remark on the challenges of integrating unstructured textual knowledge and bridge connections with well-known research areas in NLP. We provide a unified vision of structured knowledge extraction (KE) and UKI by identifying KE as a sub-process of UKI. We investigate some challenging scenarios where structured knowledge is not a feasible prior assumption and formulate each task from the point of view of UKI. We adopt simple yet effective neural architectures and discuss the challenges of such an approach. Finally, we identify KE as a form of symbolic representation. From this perspective, we remark on the need of defining sophisticated UKI processes to verify the validity of knowledge integration. To this end, we foresee frameworks capable of combining symbolic and sub-symbolic representations for learning as a solution.
Resumo:
Non Destructive Testing (NDT) and Structural Health Monitoring (SHM) are becoming essential in many application contexts, e.g. civil, industrial, aerospace etc., to reduce structures maintenance costs and improve safety. Conventional inspection methods typically exploit bulky and expensive instruments and rely on highly demanding signal processing techniques. The pressing need to overcome these limitations is the common thread that guided the work presented in this Thesis. In the first part, a scalable, low-cost and multi-sensors smart sensor network is introduced. The capability of this technology to carry out accurate modal analysis on structures undergoing flexural vibrations has been validated by means of two experimental campaigns. Then, the suitability of low-cost piezoelectric disks in modal analysis has been demonstrated. To enable the use of this kind of sensing technology in such non conventional applications, ad hoc data merging algorithms have been developed. In the second part, instead, imaging algorithms for Lamb waves inspection (namely DMAS and DS-DMAS) have been implemented and validated. Results show that DMAS outperforms the canonical Delay and Sum (DAS) approach in terms of image resolution and contrast. Similarly, DS-DMAS can achieve better results than both DMAS and DAS by suppressing artefacts and noise. To exploit the full potential of these procedures, accurate group velocity estimations are required. Thus, novel wavefield analysis tools that can address the estimation of the dispersion curves from SLDV acquisitions have been investigated. An image segmentation technique (called DRLSE) was exploited in the k-space to draw out the wavenumber profile. The DRLSE method was compared with compressive sensing methods to extract the group and phase velocity information. The validation, performed on three different carbon fibre plates, showed that the proposed solutions can accurately determine the wavenumber and velocities in polar coordinates at multiple excitation frequencies.
Resumo:
Dynamical models of stellar systems represent a powerful tool to study their internal structure and dynamics, to interpret the observed morphological and kinematical fields, and also to support numerical simulations of their evolution. We present a method especially designed to build axisymmetric Jeans models of galaxies, assumed as stationary and collisionless stellar systems. The aim is the development of a rigorous and flexible modelling procedure of multicomponent galaxies, composed of different stellar and dark matter distributions, and a central supermassive black hole. The stellar components, in particular, are intended to represent different galaxy structures, such as discs, bulges, halos, and can then have different structural (density profile, flattening, mass, scale-length), dynamical (rotation, velocity dispersion anisotropy), and population (age, metallicity, initial mass function, mass-to-light ratio) properties. The theoretical framework supporting the modelling procedure is presented, with the introduction of a suitable nomenclature, and its numerical implementation is discussed, with particular reference to the numerical code JASMINE2, developed for this purpose. We propose an approach for efficiently scaling the contributions in mass, luminosity, and rotational support, of the different matter components, allowing for fast and flexible explorations of the model parameter space. We also offer different methods of the computation of the gravitational potentials associated of the density components, especially convenient for their easier numerical tractability. A few galaxy models are studied, showing internal, and projected, structural and dynamical properties of multicomponent galaxies, with a focus on axisymmetric early-type galaxies with complex kinematical morphologies. The application of galaxy models to the study of initial conditions for hydro-dynamical and $N$-body simulations of galaxy evolution is also addressed, allowing in particular to investigate the large number of interesting combinations of the parameters which determine the structure and dynamics of complex multicomponent stellar systems.
Resumo:
Landslides are common features of the landscape of the north-central Apennine mountain range and cause frequent damage to human facilities and infrastructure. Most of these landslides move periodically with moderate velocities and, only after particular rainfall events, some accelerate abruptly. Synthetic aperture radar interferometry (InSAR) provides a particularly convenient method for studying deforming slopes. We use standard two-pass interferometry, taking advantage of the short revisit time of the Sentinel-1 satellites. In this paper we present the results of the InSAR analysis developed on several study areas in central and Northern Italian Apennines. The aims of the work described within the articles contained in this paper, concern: i) the potential of the standard two-pass interferometric technique for the recognition of active landslides; ii) the exploration of the potential related to the displacement time series resulting from a two-pass multiple time-scale InSAR analysis; iii) the evaluation of the possibility of making comparisons with climate forcing for cognitive and risk assessment purposes. Our analysis successfully identified more than 400 InSAR deformation signals (IDS) in the different study areas corresponding to active slope movements. The comparison between IDSs and thematic maps allowed us to identify the main characteristics of the slopes most prone to landslides. The analysis of displacement time series derived from monthly interferometric stacks or single 6-day interferograms allowed the establishment of landslide activity thresholds. This information, combined with the displacement time series, allowed the relationship between ground deformation and climate forcing to be successfully investigated. The InSAR data also gave access to the possibility of validating geographical warning systems and comparing the activity state of landslides with triggering probability thresholds.