10 resultados para Multiple antibiotic resistance
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Staphylococcus aureus and Staphylococcus epidermidis are leading pathogens of implant-related infections. This study aimed at investigating the diverse distribution of different bacterial pathogen factors in most prevalent S. aureus and S. epidermidis strain types causing orthopaedic implant infections. In this study the presence both of the ica genes, encoding for biofilm exopolysaccharide production, and the insertion sequence IS256, a mobile element frequently associated to transposons, was investigated in relationship with the prevalence of antibiotic resistance among Staphylococcus epidermidis strains. The investigation was conducted on 70 clinical isolates derived from orthopaedic implant infections. Among the clinical isolates investigated a dramatic high level of association was found between the presence of ica genes as well as of IS256 and multiple resistance to all the antibiotics tested. Noteworthy, a striking full association between the presence of IS256 and resistance to gentamicin was found, being none of the IS256-negative strain resistant to this antibiotic. This association is probably because of the link of the corresponding aminoglycoside-resistance genes, and IS256, often co-existing within the same staphylococcal transposon. Moreover we investigated the prevalence of aac(6’)-Ie-aph(2’’), aph (3’) IIIa, and ant(4’) genes, encoding for the three forms of aminoglycoside-modifying enzymes (AME), responsible for resistance to aminoglycoside antibiotics. All isolates were characterized by automated ribotyping, so that the presence of antibiotic resistance determinants was investigated in strains exhibiting different ribopatterns. Interestingly, combinations of coexisting AME genes appeared to be typical of specific ribopatterns. 200 S. aureus isolates, categorized into ribogroups by automated ribotyping, i.e. rDNA restriction fragment length polymorphism analysis, were screened for the presence of a panel of adhesins genes, accessory gene regulatory (agr) polymorphisms and toxins. For many ribogroups, characteristic tandem genes arrangements could be identified. Surprisingly, the isolates of the most prevalent cluster, enlisting 27 isolates, were susceptible to almost all antibiotics and never possessed the lukD/lukE gene, thus suggesting the role of factors other than antibiotic resistance and the here investigated toxins in driving the major epidemic clone to the larger success. Afterwards, .in the predominant S. aureus cluster, the bbp gene encoding bone sialoprotein-binding protein appeared a typical virulence trait, found in 93% of the isolates. Conversely, the bbp gene was identified in just 10% of the remaining isolates of the collection. In this cluster, co-presence of bbp with the cna gene encoding collagen adhesin was a pattern consistently observed. These findings indicate a crucial role of both these adhesins, able to bind the most abundant bone proteins, in the pathogenesis of orthopaedic implant infections, there where biomaterials interface bone tissues. Moreover a PCR screening for the ebpS gene, conducted on over two hundred S. aureus clinical isolates from implant related infections revealed the detection of six strains exhibiting an altered amplicon size, shorter than expected. In order to elucidate the sequence changes present in these gene variants, the trait comprised between the primers was analyzed in all six isolates bearing the modification and in four isolates exhibiting the regular amplicon size. From nucleotide translation, the corresponding encoded protein was found to lack an entire peptide segment of 60 amino acids. These variants, missing an entire hydrophobic region, could actually facilitate current structural studies, helping to assess whether the absent domain is strictly necessary for a functional adhesin conformation and its contribution to the topology of the protein. This study suggests that epidemic clones appear to pursue different survival strategies, where adhesins, when present, exhibit diverse importance as virulence factors. A practical message arising from the present study is that strategies for the prevention and treatment of implant orthopaedic infections should target adhesins conjointly present in epidemic clones. Furthermore, the choice of reference strains for testing the anti-infective properties of biomaterials should focus on a selection of the most prevalent clones as they exhibit distinct profiles of adhesins.
Resumo:
Il problema dell'antibiotico-resistenza è un problema di sanità pubblica per affrontare il quale è necessario un sistema di sorveglianza basato sulla raccolta e l'analisi dei dati epidemiologici di laboratorio. Il progetto di dottorato è consistito nello sviluppo di una applicazione web per la gestione di tali dati di antibiotico sensibilità di isolati clinici utilizzabile a livello di ospedale. Si è creata una piattaforma web associata a un database relazionale per avere un’applicazione dinamica che potesse essere aggiornata facilmente inserendo nuovi dati senza dover manualmente modificare le pagine HTML che compongono l’applicazione stessa. E’ stato utilizzato il database open-source MySQL in quanto presenta numerosi vantaggi: estremamente stabile, elevate prestazioni, supportato da una grande comunità online ed inoltre gratuito. Il contenuto dinamico dell’applicazione web deve essere generato da un linguaggio di programmazione tipo “scripting” che automatizzi operazioni di inserimento, modifica, cancellazione, visualizzazione di larghe quantità di dati. E’ stato scelto il PHP, linguaggio open-source sviluppato appositamente per la realizzazione di pagine web dinamiche, perfettamente utilizzabile con il database MySQL. E’ stata definita l’architettura del database creando le tabelle contenenti i dati e le relazioni tra di esse: le anagrafiche, i dati relativi ai campioni, microrganismi isolati e agli antibiogrammi con le categorie interpretative relative al dato antibiotico. Definite tabelle e relazioni del database è stato scritto il codice associato alle funzioni principali: inserimento manuale di antibiogrammi, importazione di antibiogrammi multipli provenienti da file esportati da strumenti automatizzati, modifica/eliminazione degli antibiogrammi precedenti inseriti nel sistema, analisi dei dati presenti nel database con tendenze e andamenti relativi alla prevalenza di specie microbiche e alla chemioresistenza degli stessi, corredate da grafici. Lo sviluppo ha incluso continui test delle funzioni via via implementate usando reali dati clinici e sono stati introdotti appositi controlli e l’introduzione di una semplice e pulita veste grafica.
Resumo:
The ideal approach for the long term treatment of intestinal disorders, such as inflammatory bowel disease (IBD), is represented by a safe and well tolerated therapy able to reduce mucosal inflammation and maintain homeostasis of the intestinal microbiota. A combined therapy with antimicrobial agents, to reduce antigenic load, and immunomodulators, to ameliorate the dysregulated responses, followed by probiotic supplementation has been proposed. Because of the complementary mechanisms of action of antibiotics and probiotics, a combined therapeutic approach would give advantages in terms of enlargement of the antimicrobial spectrum, due to the barrier effect of probiotic bacteria, and limitation of some side effects of traditional chemiotherapy (i.e. indiscriminate decrease of aggressive and protective intestinal bacteria, altered absorption of nutrient elements, allergic and inflammatory reactions). Rifaximin (4-deoxy-4’-methylpyrido[1’,2’-1,2]imidazo[5,4-c]rifamycin SV) is a product of synthesis experiments designed to modify the parent compound, rifamycin, in order to achieve low gastrointestinal absorption while retaining good antibacterial activity. Both experimental and clinical pharmacology clearly show that this compound is a non systemic antibiotic with a broad spectrum of antibacterial action, covering Gram-positive and Gram-negative organisms, both aerobes and anaerobes. Being virtually non absorbed, its bioavailability within the gastrointestinal tract is rather high with intraluminal and faecal drug concentrations that largely exceed the MIC values observed in vitro against a wide range of pathogenic microorganisms. The gastrointestinal tract represents therefore the primary therapeutic target and gastrointestinal infections the main indication. The little value of rifaximin outside the enteric area minimizes both antimicrobial resistance and systemic adverse events. Fermented dairy products enriched with probiotic bacteria have developed into one of the most successful categories of functional foods. Probiotics are defined as “live microorganisms which, when administered in adequate amounts, confer a health benefit on the host” (FAO/WHO, 2002), and mainly include Lactobacillus and Bifidobacterium species. Probiotic bacteria exert a direct effect on the intestinal microbiota of the host and contribute to organoleptic, rheological and nutritional properties of food. Administration of pharmaceutical probiotic formula has been associated with therapeutic effects in treatment of diarrhoea, constipation, flatulence, enteropathogens colonization, gastroenteritis, hypercholesterolemia, IBD, such as ulcerative colitis (UC), Crohn’s disease, pouchitis and irritable bowel syndrome. Prerequisites for probiotics are to be effective and safe. The characteristics of an effective probiotic for gastrointestinal tract disorders are tolerance to upper gastrointestinal environment (resistance to digestion by enteric or pancreatic enzymes, gastric acid and bile), adhesion on intestinal surface to lengthen the retention time, ability to prevent the adherence, establishment and/or replication of pathogens, production of antimicrobial substances, degradation of toxic catabolites by bacterial detoxifying enzymatic activities, and modulation of the host immune responses. This study was carried out using a validated three-stage fermentative continuous system and it is aimed to investigate the effect of rifaximin on the colonic microbial flora of a healthy individual, in terms of bacterial composition and production of fermentative metabolic end products. Moreover, this is the first study that investigates in vitro the impact of the simultaneous administration of the antibiotic rifaximin and the probiotic B. lactis BI07 on the intestinal microbiota. Bacterial groups of interest were evaluated using culture-based methods and molecular culture-independent techniques (FISH, PCR-DGGE). Metabolic outputs in terms of SCFA profiles were determined by HPLC analysis. Collected data demonstrated that rifaximin as well as antibiotic and probiotic treatment did not change drastically the intestinal microflora, whereas bacteria belonging to Bifidobacterium and Lactobacillus significantly increase over the course of the treatment, suggesting a spontaneous upsurge of rifaximin resistance. These results are in agreement with a previous study, in which it has been demonstrated that rifaximin administration in patients with UC, affects the host with minor variations of the intestinal microflora, and that the microbiota is restored over a wash-out period. In particular, several Bifidobacterium rifaximin resistant mutants could be isolated during the antibiotic treatment, but they disappeared after the antibiotic suspension. Furthermore, bacteria belonging to Atopobium spp. and E. rectale/Clostridium cluster XIVa increased significantly after rifaximin and probiotic treatment. Atopobium genus and E. rectale/Clostridium cluster XIVa are saccharolytic, butyrate-producing bacteria, and for these characteristics they are widely considered health-promoting microorganisms. The absence of major variations in the intestinal microflora of a healthy individual and the significant increase in probiotic and health-promoting bacteria concentrations support the rationale of the administration of rifaximin as efficacious and non-dysbiosis promoting therapy and suggest the efficacy of an antibiotic/probiotic combined treatment in several gut pathologies, such as IBD. To assess the use of an antibiotic/probiotic combination for clinical management of intestinal disorders, genetic, proteomic and physiologic approaches were employed to elucidate molecular mechanisms determining rifaximin resistance in Bifidobacterium, and the expected interactions occurring in the gut between these bacteria and the drug. The ability of an antimicrobial agent to select resistance is a relevant factor that affects its usefulness and may diminish its useful life. Rifaximin resistance phenotype was easily acquired by all bifidobacteria analyzed [type strains of the most representative intestinal bifidobacterial species (B. infantis, B. breve, B. longum, B. adolescentis and B. bifidum) and three bifidobacteria included in a pharmaceutical probiotic preparation (B. lactis BI07, B. breve BBSF and B. longum BL04)] and persisted for more than 400 bacterial generations in the absence of selective pressure. Exclusion of any reversion phenomenon suggested two hypotheses: (i) stable and immobile genetic elements encode resistance; (ii) the drug moiety does not act as an inducer of the resistance phenotype, but enables selection of resistant mutants. Since point mutations in rpoB have been indicated as representing the principal factor determining rifampicin resistance in E. coli and M. tuberculosis, whether a similar mechanism also occurs in Bifidobacterium was verified. The analysis of a 129 bp rpoB core region of several wild-type and resistant bifidobacteria revealed five different types of miss-sense mutations in codons 513, 516, 522 and 529. Position 529 was a novel mutation site, not previously described, and position 522 appeared interesting for both the double point substitutions and the heterogeneous profile of nucleotide changes. The sequence heterogeneity of codon 522 in Bifidobacterium leads to hypothesize an indirect role of its encoded amino acid in the binding with the rifaximin moiety. These results demonstrated the chromosomal nature of rifaximin resistance in Bifidobacterium, minimizing risk factors for horizontal transmission of resistance elements between intestinal microbial species. Further proteomic and physiologic investigations were carried out using B. lactis BI07, component of a pharmaceutical probiotic preparation, as a model strain. The choice of this strain was determined based on the following elements: (i) B. lactis BI07 is able to survive and persist in the gut; (ii) a proteomic overview of this strain has been recently reported. The involvement of metabolic changes associated with rifaximin resistance was investigated by proteomic analysis performed with two-dimensional electrophoresis and mass spectrometry. Comparative proteomic mapping of BI07-wt and BI07-res revealed that most differences in protein expression patterns were genetically encoded rather than induced by antibiotic exposure. In particular, rifaximin resistance phenotype was characterized by increased expression levels of stress proteins. Overexpression of stress proteins was expected, as they represent a common non specific response by bacteria when stimulated by different shock conditions, including exposure to toxic agents like heavy metals, oxidants, acids, bile salts and antibiotics. Also, positive transcription regulators were found to be overexpressed in BI07-res, suggesting that bacteria could activate compensatory mechanisms to assist the transcription process in the presence of RNA polymerase inhibitors. Other differences in expression profiles were related to proteins involved in central metabolism; these modifications suggest metabolic disadvantages of resistant mutants in comparison with sensitive bifidobacteria in the gut environment, without selective pressure, explaining their disappearance from faeces of patients with UC after interruption of antibiotic treatment. The differences observed between BI07-wt e BI07-res proteomic patterns, as well as the high frequency of silent mutations reported for resistant mutants of Bifidobacterium could be the consequences of an increased mutation rate, mechanism which may lead to persistence of resistant bacteria in the population. However, the in vivo disappearance of resistant mutants in absence of selective pressure, allows excluding the upsurge of compensatory mutations without loss of resistance. Furthermore, the proteomic characterization of the resistant phenotype suggests that rifaximin resistance is associated with a reduced bacterial fitness in B. lactis BI07-res, supporting the hypothesis of a biological cost of antibiotic resistance in Bifidobacterium. The hypothesis of rifaximin inactivation by bacterial enzymatic activities was verified by using liquid chromatography coupled with tandem mass spectrometry. Neither chemical modifications nor degradation derivatives of the rifaximin moiety were detected. The exclusion of a biodegradation pattern for the drug was further supported by the quantitative recovery in BI07-res culture fractions of the total rifaximin amount (100 μg/ml) added to the culture medium. To confirm the main role of the mutation on the β chain of RNA polymerase in rifaximin resistance acquisition, transcription activity of crude enzymatic extracts of BI07-res cells was evaluated. Although the inhibition effects of rifaximin on in vitro transcription were definitely higher for BI07-wt than for BI07-res, a partial resistance of the mutated RNA polymerase at rifaximin concentrations > 10 μg/ml was supposed, on the basis of the calculated differences in inhibition percentages between BI07-wt and BI07-res. By considering the resistance of entire BI07-res cells to rifaximin concentrations > 100 μg/ml, supplementary resistance mechanisms may take place in vivo. A barrier for the rifaximin uptake in BI07-res cells was suggested in this study, on the basis of the major portion of the antibiotic found to be bound to the cellular pellet respect to the portion recovered in the cellular lysate. Related to this finding, a resistance mechanism involving changes of membrane permeability was supposed. A previous study supports this hypothesis, demonstrating the involvement of surface properties and permeability in natural resistance to rifampicin in mycobacteria, isolated from cases of human infection, which possessed a rifampicin-susceptible RNA polymerase. To understand the mechanism of membrane barrier, variations in percentage of saturated and unsaturated FAs and their methylation products in BI07-wt and BI07-res membranes were investigated. While saturated FAs confer rigidity to membrane and resistance to stress agents, such as antibiotics, a high level of lipid unsaturation is associated with high fluidity and susceptibility to stresses. Thus, the higher percentage of saturated FAs during the stationary phase of BI07-res could represent a defence mechanism of mutant cells to prevent the antibiotic uptake. Furthermore, the increase of CFAs such as dihydrosterculic acid during the stationary phase of BI07-res suggests that this CFA could be more suitable than its isomer lactobacillic acid to interact with and prevent the penetration of exogenous molecules including rifaximin. Finally, the impact of rifaximin on immune regulatory functions of the gut was evaluated. It has been suggested a potential anti-inflammatory effect of rifaximin, with reduced secretion of IFN-γ in a rodent model of colitis. Analogously, it has been reported a significant decrease in IL-8, MCP-1, MCP-3 e IL-10 levels in patients affected by pouchitis, treated with a combined therapy of rifaximin and ciprofloxacin. Since rifaximin enables in vivo and in vitro selection of Bifidobacterium resistant mutants with high frequency, the immunomodulation activities of rifaximin associated with a B. lactis resistant mutant were also taken into account. Data obtained from PBMC stimulation experiments suggest the following conclusions: (i) rifaximin does not exert any effect on production of IL-1β, IL-6 and IL-10, whereas it weakly stimulates production of TNF-α; (ii) B. lactis appears as a good inducer of IL-1β, IL-6 and TNF-α; (iii) combination of BI07-res and rifaximin exhibits a lower stimulation effect than BI07-res alone, especially for IL-6. These results confirm the potential anti-inflammatory effect of rifaximin, and are in agreement with several studies that report a transient pro-inflammatory response associated with probiotic administration. The understanding of the molecular factors determining rifaximin resistance in the genus Bifidobacterium assumes an applicative significance at pharmaceutical and medical level, as it represents the scientific basis to justify the simultaneous use of the antibiotic rifaximin and probiotic bifidobacteria in the clinical treatment of intestinal disorders.
Resumo:
60 strains (belonging to the genera Lactobacillus, Bifidobacterium, Leuconostoc and Enterococcus) were tested for their capacity to inhibit the growth of 3 strains of Campylobacter jejuni: Lactobacilli and bifidobacteria were left to grow in MRS or TPY broth at 37°C overnight in anaerobic conditions; Campylobacter jejuni was inoculated in blood agar plates at 37°C for 24-48 hours in microaerophilic conditions. The inhibition experiments were carried out in vitro using ”Spot agar test” and “Well diffusion assay” techniques testing both cellular activity and that of the surnatant. 11 strains proved to inhibit the growth of Campylobacter jejuni. These strains were subsequently analised analised in order to evaluate the resistance to particular situations of stress which are found in the gastrointestinal tract and during the industrial transformation processes (Starvation stress, osmotic stress, heat stress, resistance to pH and to bile salts). Resistance to starvation stress: all strains seemed to resist the stress (except one strain). Resistance to osmotic stress: all strains were relatively resistant to the concentrations of 6% w/v of NaCl (except one strain). Resistance to heat stress: only one strain showed little resistance to the 55°C temperature. Resistance to pH: In the presence of a low pH (2.5), many strains rapidly lost their viability after approximately 1 hour. Resistance to bile salts: Except for one strain, all strains seemed to be relatively resistant to the 2% w/v concentration of bile salts. Afterward, strains were identified by using phenotipic and molecular techniques. Phenotipic identification was carried out by using API 50 CHL (bioMérieux) and API 20 STREP identification system (bioMérieux); molecular identification with species-specific PCR: the molecular techniques confirmed the results by phenotipic identification. For testing the antibiotic resistance profile, bacterial strains were subcultured in MRS or TPY broth and incubated for 18 h at 37°C under anaerobic conditions. Antibiotics tested (Tetracycline, Trimethoprim, Cefuroxime, Kanamycin, Chloramphenicol, Vancomycin, Ampycillin, Sterptomycin, Erythromycin) were diluted to the final concentrations of: 2,4,8,16,32,64,128,256 mg/ml. Then, 20 μl fresh bacterial culture (final concentration in the plates approximately 106 cfu/ml) were added to 160 μl MRS or TPY broth and 20 μl antibiotic solution. As positive control the bacterial culture (20 ul) was added to broth (160 ul) and water (20 ul). Test was performed on plates P96, that after the inoculum were incubated for 24 h at 37oC, then the antibiotic resistance was determined by measuring the Optical Density (OD) at 620 nm with Multiscan EX. All strains showed a similar behaviour: resistance to all antibiotic tested. Further studies are needed.
Resumo:
Members of the genera Campylobacter and Helicobacter have been in the spotlight in recent decades because of their status as animals and/or humans pathogens, both confirmed and emerging, and because of their association with food-borne and zoonotic diseases. First observations of spiral shaped bacteria or Campylobacter-like organisms (CLO) date back to the end of the 19th century, however the lack of adequate isolation methods hampered further research. With the introduction of methods such as selective media and a filtration procedure during the 1970s led to a renewed interest in Campylobacter, especially as this enabled elucidation of their role in human hosts. On the other hand the classification and identification of these bacteria was troublesome, mainly because of the biochemical inertness and fastidious growth requirements. In 1991, the taxonomy of Campylobacter and related organisms was thoroughly revised, since this revision several new Campylobacter and Helicobacter species have been described. Moreover, thanks to the introduction of a polyphasic taxonomic practice, the classification of these novel species is well-founded. Indeed, a polyphasic approach was here followed for characterizing eight isolates obtained from rabbits epidemiologically not correlated and as a result a new Campylobacter species was proposed: Campylobacter cuniculorum (Chapter 1). Furthermore, there is a paucity of data regarding the occurrence of spiral shaped enteric flora in leporids. In order to define the prevalence both of this new species and other CLO in leporids (chapter 2), a total of 85 whole intestinal tracts of rabbits reared in 32 farms and 29 capture hares, epidemiologically not correlated, were collected just after evisceration at the slaughterhouse or during necroscopy. Examination and isolation methods were varied in order to increase the sensibility level of detection, and 100% of rabbit farms resulted positive for C. cuniculorum in high concentrations. Moreover, in 3.53% of the total rabbits examined, a Helicobacter species was detected. Nevertheless, all hares resulted negative both for Campylobacter or Helicobacter species. High prevalence of C. cuniculorum were found in rabbits, and in order to understand if this new species could play a pathological role, a study on some virulence determinants of C. cuniculorum was conducted (Chapter 3). Although this new species were able to adhere and invade, exert cytolethal distending toxin-like effects although at a low titre, a cdtB was not detected. There was no clear relationship between source of isolation or disease manifestation and possession of statistically significantly levels of particular virulence-associated factors although, cell adhesion and invasion occurred. Furthermore, antibiotic susceptibility was studied (chapter 4) in Campylobacter and in Escherichia coli strains, isolated from rabbits. It was possible to find acquired resistance of C. cuniculorum to enrofloxacin, ciprofloxacin and erytromycin. C. coli isolate was susceptible to all antimicrobial tested and moreover it is considered as a wild-type strain. Moreover, E. coli was found at low caecal concentration in rabbits and 30 phenotypes of antibiotic resistance were founded as well as the high rate of resistances to at least one antibiotic (98.1%). The majority of resistances were found from strains belonging to intensive farming system. In conclusion, in the course of the present study a new species isolated from rabbits was described, C. cuniculorum, and its high prevalence was established. Nevertheless, in hare samples no Campylobacter and Helicobacter species were detected. Some virulence determinants were further analyzed, however further studied are needed to understand the potential pathogenicity of this new species. On the other hand, antimicrobial susceptibility was monitored both in C. cuniculorum and indicator bacteria and acquired resistance was observed towards some antibiotics, indicating a possible role of rabbitries in the diffusion of antibiotic resistance. Further studies are necessary to describe and evaluate the eventual zoonotic role of Campylobacter cuniculorum.
Resumo:
Clostridium difficile is an obligate anaerobic, Gram-positive, endospore-forming bacterium. Although an opportunistic pathogen, it is one of the important causes of healthcare-associated infections. While toxins TcdA and TcdB are the main virulence factors of C. difficile, the factors or processes involved in gut colonization during infection remain unclear. The biofilm-forming ability of bacterial pathogens has been associated with increased antibiotic resistance and chronic recurrent infections. Little is known about biofilm formation by anaerobic gut species. Biofilm formation by C. difficile could play a role in virulence and persistence of C. difficile, as seen for other intestinal pathogens. We demonstrate that C. difficile clinical strains, 630, and the strain isolated in the outbreak, R20291, form structured biofilms in vitro. Biofilm matrix is made of proteins, DNA and polysaccharide. Strain R20291 accumulates substantially more biofilm. Employing isogenic mutants, we show that virulence-associated proteins, Cwp84, flagella and a putative quorum sensing regulator, LuxS, Spo0A, are required for maximal biofilm formation by C. difficile. Moreover we demonstrate that bacteria in C. difficile biofilms are more resistant to high concentrations of vancomycin, a drug commonly used for treatment of CDI, and that inhibitory and sub-inhibitory concentrations of the same antibiotic induce biofilm formation. Surprisingly, clinical C. difficile strains from the same out-break, but from different origin, show differences in biofilm formation. Genome sequence analysis of these strains showed presence of a single nucleoide polymorphism (SNP) in the anti-σ factor RsbW, which regulates the stress-induced alternative sigma factor B (σB). We further demonstrate that RsbW, a negative regulator of alternative sigma factor B, has a role in biofilm formation and sporulation of C. difficile. Our data suggest that biofilm formation by C. difficile is a complex multifactorial process and may be a crucial mechanism for clostridial persistence in the host.
Resumo:
The progresses of electron devices integration have proceeded for more than 40 years following the well–known Moore’s law, which states that the transistors density on chip doubles every 24 months. This trend has been possible due to the downsizing of the MOSFET dimensions (scaling); however, new issues and new challenges are arising, and the conventional ”bulk” architecture is becoming inadequate in order to face them. In order to overcome the limitations related to conventional structures, the researchers community is preparing different solutions, that need to be assessed. Possible solutions currently under scrutiny are represented by: • devices incorporating materials with properties different from those of silicon, for the channel and the source/drain regions; • new architectures as Silicon–On–Insulator (SOI) transistors: the body thickness of Ultra-Thin-Body SOI devices is a new design parameter, and it permits to keep under control Short–Channel–Effects without adopting high doping level in the channel. Among the solutions proposed in order to overcome the difficulties related to scaling, we can highlight heterojunctions at the channel edge, obtained by adopting for the source/drain regions materials with band–gap different from that of the channel material. This solution allows to increase the injection velocity of the particles travelling from the source into the channel, and therefore increase the performance of the transistor in terms of provided drain current. The first part of this thesis work addresses the use of heterojunctions in SOI transistors: chapter 3 outlines the basics of the heterojunctions theory and the adoption of such approach in older technologies as the heterojunction–bipolar–transistors; moreover the modifications introduced in the Monte Carlo code in order to simulate conduction band discontinuities are described, and the simulations performed on unidimensional simplified structures in order to validate them as well. Chapter 4 presents the results obtained from the Monte Carlo simulations performed on double–gate SOI transistors featuring conduction band offsets between the source and drain regions and the channel. In particular, attention has been focused on the drain current and to internal quantities as inversion charge, potential energy and carrier velocities. Both graded and abrupt discontinuities have been considered. The scaling of devices dimensions and the adoption of innovative architectures have consequences on the power dissipation as well. In SOI technologies the channel is thermally insulated from the underlying substrate by a SiO2 buried–oxide layer; this SiO2 layer features a thermal conductivity that is two orders of magnitude lower than the silicon one, and it impedes the dissipation of the heat generated in the active region. Moreover, the thermal conductivity of thin semiconductor films is much lower than that of silicon bulk, due to phonon confinement and boundary scattering. All these aspects cause severe self–heating effects, that detrimentally impact the carrier mobility and therefore the saturation drive current for high–performance transistors; as a consequence, thermal device design is becoming a fundamental part of integrated circuit engineering. The second part of this thesis discusses the problem of self–heating in SOI transistors. Chapter 5 describes the causes of heat generation and dissipation in SOI devices, and it provides a brief overview on the methods that have been proposed in order to model these phenomena. In order to understand how this problem impacts the performance of different SOI architectures, three–dimensional electro–thermal simulations have been applied to the analysis of SHE in planar single and double–gate SOI transistors as well as FinFET, featuring the same isothermal electrical characteristics. In chapter 6 the same simulation approach is extensively employed to study the impact of SHE on the performance of a FinFET representative of the high–performance transistor of the 45 nm technology node. Its effects on the ON–current, the maximum temperatures reached inside the device and the thermal resistance associated to the device itself, as well as the dependence of SHE on the main geometrical parameters have been analyzed. Furthermore, the consequences on self–heating of technological solutions such as raised S/D extensions regions or reduction of fin height are explored as well. Finally, conclusions are drawn in chapter 7.
Resumo:
The principle aim of this study was to investigate biological predictors of response and resistance to multiple myeloma treatment. Two hypothesis had been proposed as responsible of responsiveness: SNPs in DNA repair and Folate pathway, and P-gp dependent efflux. As a first objective, panel of SNPs in DNA repair and Folate pathway genes, were analyzed. It was a retrospective study in a group of 454, previously untreated, MM patients enrolled in a randomized phase III open-label study. Results show that some SNPs in Folate pathway are correlated with response to MM treatment. MTR genotype was associated with favorable response in the overall population of MM patients. However, this relation, disappear after adjustment for treatment response. When poor responder includes very good partial response, partial response and stable/progressive disease MTFHR rs1801131 genotype was associated with poor response to therapy. This relation - unlike in MTR – was still significant after adjustment for treatment response. Identification of this genetic variant in MM patients could be used as an independent prognostic factor for therapeutic outcome in the clinical practice. In the second objective, basic disposition characteristics of bortezomib was investigated. We demonstrated that bortezomib is a P-gp substrate in a bi-directional transport study. We obtain apparent permeability rate values that together with solubility values can have a crucial implication in better understanding of bortezomib pharmacokinetics with respect to the importance of membrane transporters. Subsequently, in view of the importance of P-gp for bortezomib responsiveness a panel of SNPs in ABCB1 gene - coding for P-gp - were analyzed. In particular we analyzed five SNPs, none of them however correlated with treatment responsiveness. However, we found a significant association between ABCB1 variants and cytogenetic abnormalities. In particular, deletion of chromosome 17 and t(4;14) translocation were present in patients harboring rs60023214 and rs2038502 variants respectively.
Resumo:
The existence of Multiple Myeloma Stem cells (MMSCs)is supposed to be one of the major causes of MM drug-resistance. However, very little is known about the molecular characteristics of MMSCs, even if some studies suggested that these cells resembles the memory B cells. In order to molecularly characterize MMSCs, we isolated the 138+138- population. For each cell fraction we performed a VDJ rearrangement analysis. The complete set of aberrations were performed by SNP Array 6.0 and HG-U133 Plus 2.0 microarray analyses (Affymetrix). The VDJ rearrangement analyses confirmed the clonal relationship between the 138+ clone and the immature clone. Both BM and PBL 138+ clones showed exactly the same genomic macroalterations. In the BM and PBL 138-19+27+ cell fractions several micro-alterations (range: 1-350 Kb) unique of the memory B cells clone were highlighted. Any micro-alterations detected were located out of any genomic variants region and are presumably associated to the MM pathogenesis, as confirmed by the presence of KRAS, WWOX and XIAP genes among the amplified regions. To get insight into the biology of the clonotypic B cell population, we compared the gene expression profile of 8 MM B cells samples 5 donor B cells vs, thus showing a differential expression of 11480 probes (p-value: <0,05). Among the self-renewal mechanisms, we observed the down-regulation of Hedgehog pathway and the iperactivation of Notch and Wnt signaling. Moreover, these immature cells showed a particular phenotype correlated to resistance to proteasome inhibitors (IRE1α-XBP1: -18.0; -19.96. P<0,05). Data suggested that the MM 138+ clone might resume the end of the complex process of myelomagenesis, whereas the memory B cells have some intriguing micro-alterations and a specific transcriptional program, supporting the idea that these post germinal center cells might be involved in the transforming event that originate and sustain the neoplastic clone.
Resumo:
Understanding the biology of Multiple Myeloma (MM) is of primary importance in the struggle to achieve a cure for this yet incurable neoplasm. A better knowledge of the mechanism underlying the development of MM can guide us in the development of new treatment strategies. Studies both on solid and haematological tumours have shown that cancer comprises a collection of related but subtly different clones, a feature that has been termed “intra-clonal heterogeneity”. This intra-clonal heterogeneity is likely, from a “Darwinian” natural selection perspective, to be the essential substrate for cancer evolution, disease progression and relapse. In this context the critical mechanism for tumour progression is competition between individual clones (and cancer stem cells) for the same microenvironmental “niche”, combined with the process of adaptation and natural selection. The Darwinian behavioural characteristics of cancer stem cells are applicable to MM. The knowledge that intra-clonal heterogeneity is an important feature of tumours’ biology has changed our way to addressing cancer, now considered as a composite mixture of clones and not as a linear evolving disease. In this variable therapeutic landscape it is important for clinicians and researchers to consider the impact that evolutionary biology and intra-clonal heterogeneity have on the treatment of myeloma and the emergence of treatment resistance. It is clear that if we want to effectively cure myeloma it is of primarily importance to understand disease biology and evolution. Only by doing so will we be able to effectively use all of the new tools we have at our disposal to cure myeloma and to use treatment in the most effective way possible. The aim of the present research project was to investigate at different levels the presence of intra-clonal heterogeneity in MM patients, and to evaluate the impact of treatment on clonal evolution and on patients’ outcomes.