4 resultados para Multimodal retrieval
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The motivation for the work presented in this thesis is to retrieve profile information for the atmospheric trace constituents nitrogen dioxide (NO2) and ozone (O3) in the lower troposphere from remote sensing measurements. The remote sensing technique used, referred to as Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS), is a recent technique that represents a significant advance on the well-established DOAS, especially for what it concerns the study of tropospheric trace consituents. NO2 is an important trace gas in the lower troposphere due to the fact that it is involved in the production of tropospheric ozone; ozone and nitrogen dioxide are key factors in determining the quality of air with consequences, for example, on human health and the growth of vegetation. To understand the NO2 and ozone chemistry in more detail not only the concentrations at ground but also the acquisition of the vertical distribution is necessary. In fact, the budget of nitrogen oxides and ozone in the atmosphere is determined both by local emissions and non-local chemical and dynamical processes (i.e. diffusion and transport at various scales) that greatly impact on their vertical and temporal distribution: thus a tool to resolve the vertical profile information is really important. Useful measurement techniques for atmospheric trace species should fulfill at least two main requirements. First, they must be sufficiently sensitive to detect the species under consideration at their ambient concentration levels. Second, they must be specific, which means that the results of the measurement of a particular species must be neither positively nor negatively influenced by any other trace species simultaneously present in the probed volume of air. Air monitoring by spectroscopic techniques has proven to be a very useful tool to fulfill these desirable requirements as well as a number of other important properties. During the last decades, many such instruments have been developed which are based on the absorption properties of the constituents in various regions of the electromagnetic spectrum, ranging from the far infrared to the ultraviolet. Among them, Differential Optical Absorption Spectroscopy (DOAS) has played an important role. DOAS is an established remote sensing technique for atmospheric trace gases probing, which identifies and quantifies the trace gases in the atmosphere taking advantage of their molecular absorption structures in the near UV and visible wavelengths of the electromagnetic spectrum (from 0.25 μm to 0.75 μm). Passive DOAS, in particular, can detect the presence of a trace gas in terms of its integrated concentration over the atmospheric path from the sun to the receiver (the so called slant column density). The receiver can be located at ground, as well as on board an aircraft or a satellite platform. Passive DOAS has, therefore, a flexible measurement configuration that allows multiple applications. The ability to properly interpret passive DOAS measurements of atmospheric constituents depends crucially on how well the optical path of light collected by the system is understood. This is because the final product of DOAS is the concentration of a particular species integrated along the path that radiation covers in the atmosphere. This path is not known a priori and can only be evaluated by Radiative Transfer Models (RTMs). These models are used to calculate the so called vertical column density of a given trace gas, which is obtained by dividing the measured slant column density to the so called air mass factor, which is used to quantify the enhancement of the light path length within the absorber layers. In the case of the standard DOAS set-up, in which radiation is collected along the vertical direction (zenith-sky DOAS), calculations of the air mass factor have been made using “simple” single scattering radiative transfer models. This configuration has its highest sensitivity in the stratosphere, in particular during twilight. This is the result of the large enhancement in stratospheric light path at dawn and dusk combined with a relatively short tropospheric path. In order to increase the sensitivity of the instrument towards tropospheric signals, measurements with the telescope pointing the horizon (offaxis DOAS) have to be performed. In this circumstances, the light path in the lower layers can become very long and necessitate the use of radiative transfer models including multiple scattering, the full treatment of atmospheric sphericity and refraction. In this thesis, a recent development in the well-established DOAS technique is described, referred to as Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS). The MAX-DOAS consists in the simultaneous use of several off-axis directions near the horizon: using this configuration, not only the sensitivity to tropospheric trace gases is greatly improved, but vertical profile information can also be retrieved by combining the simultaneous off-axis measurements with sophisticated RTM calculations and inversion techniques. In particular there is a need for a RTM which is capable of dealing with all the processes intervening along the light path, supporting all DOAS geometries used, and treating multiple scattering events with varying phase functions involved. To achieve these multiple goals a statistical approach based on the Monte Carlo technique should be used. A Monte Carlo RTM generates an ensemble of random photon paths between the light source and the detector, and uses these paths to reconstruct a remote sensing measurement. Within the present study, the Monte Carlo radiative transfer model PROMSAR (PROcessing of Multi-Scattered Atmospheric Radiation) has been developed and used to correctly interpret the slant column densities obtained from MAX-DOAS measurements. In order to derive the vertical concentration profile of a trace gas from its slant column measurement, the AMF is only one part in the quantitative retrieval process. One indispensable requirement is a robust approach to invert the measurements and obtain the unknown concentrations, the air mass factors being known. For this purpose, in the present thesis, we have used the Chahine relaxation method. Ground-based Multiple AXis DOAS, combined with appropriate radiative transfer models and inversion techniques, is a promising tool for atmospheric studies in the lower troposphere and boundary layer, including the retrieval of profile information with a good degree of vertical resolution. This thesis has presented an application of this powerful comprehensive tool for the study of a preserved natural Mediterranean area (the Castel Porziano Estate, located 20 km South-West of Rome) where pollution is transported from remote sources. Application of this tool in densely populated or industrial areas is beginning to look particularly fruitful and represents an important subject for future studies.
Resumo:
The research activity carried out during the PhD course was focused on the development of mathematical models of some cognitive processes and their validation by means of data present in literature, with a double aim: i) to achieve a better interpretation and explanation of the great amount of data obtained on these processes from different methodologies (electrophysiological recordings on animals, neuropsychological, psychophysical and neuroimaging studies in humans), ii) to exploit model predictions and results to guide future research and experiments. In particular, the research activity has been focused on two different projects: 1) the first one concerns the development of neural oscillators networks, in order to investigate the mechanisms of synchronization of the neural oscillatory activity during cognitive processes, such as object recognition, memory, language, attention; 2) the second one concerns the mathematical modelling of multisensory integration processes (e.g. visual-acoustic), which occur in several cortical and subcortical regions (in particular in a subcortical structure named Superior Colliculus (SC)), and which are fundamental for orienting motor and attentive responses to external world stimuli. This activity has been realized in collaboration with the Center for Studies and Researches in Cognitive Neuroscience of the University of Bologna (in Cesena) and the Department of Neurobiology and Anatomy of the Wake Forest University School of Medicine (NC, USA). PART 1. Objects representation in a number of cognitive functions, like perception and recognition, foresees distribute processes in different cortical areas. One of the main neurophysiological question concerns how the correlation between these disparate areas is realized, in order to succeed in grouping together the characteristics of the same object (binding problem) and in maintaining segregated the properties belonging to different objects simultaneously present (segmentation problem). Different theories have been proposed to address these questions (Barlow, 1972). One of the most influential theory is the so called “assembly coding”, postulated by Singer (2003), according to which 1) an object is well described by a few fundamental properties, processing in different and distributed cortical areas; 2) the recognition of the object would be realized by means of the simultaneously activation of the cortical areas representing its different features; 3) groups of properties belonging to different objects would be kept separated in the time domain. In Chapter 1.1 and in Chapter 1.2 we present two neural network models for object recognition, based on the “assembly coding” hypothesis. These models are networks of Wilson-Cowan oscillators which exploit: i) two high-level “Gestalt Rules” (the similarity and previous knowledge rules), to realize the functional link between elements of different cortical areas representing properties of the same object (binding problem); 2) the synchronization of the neural oscillatory activity in the γ-band (30-100Hz), to segregate in time the representations of different objects simultaneously present (segmentation problem). These models are able to recognize and reconstruct multiple simultaneous external objects, even in difficult case (some wrong or lacking features, shared features, superimposed noise). In Chapter 1.3 the previous models are extended to realize a semantic memory, in which sensory-motor representations of objects are linked with words. To this aim, the network, previously developed, devoted to the representation of objects as a collection of sensory-motor features, is reciprocally linked with a second network devoted to the representation of words (lexical network) Synapses linking the two networks are trained via a time-dependent Hebbian rule, during a training period in which individual objects are presented together with the corresponding words. Simulation results demonstrate that, during the retrieval phase, the network can deal with the simultaneous presence of objects (from sensory-motor inputs) and words (from linguistic inputs), can correctly associate objects with words and segment objects even in the presence of incomplete information. Moreover, the network can realize some semantic links among words representing objects with some shared features. These results support the idea that semantic memory can be described as an integrated process, whose content is retrieved by the co-activation of different multimodal regions. In perspective, extended versions of this model may be used to test conceptual theories, and to provide a quantitative assessment of existing data (for instance concerning patients with neural deficits). PART 2. The ability of the brain to integrate information from different sensory channels is fundamental to perception of the external world (Stein et al, 1993). It is well documented that a number of extraprimary areas have neurons capable of such a task; one of the best known of these is the superior colliculus (SC). This midbrain structure receives auditory, visual and somatosensory inputs from different subcortical and cortical areas, and is involved in the control of orientation to external events (Wallace et al, 1993). SC neurons respond to each of these sensory inputs separately, but is also capable of integrating them (Stein et al, 1993) so that the response to the combined multisensory stimuli is greater than that to the individual component stimuli (enhancement). This enhancement is proportionately greater if the modality-specific paired stimuli are weaker (the principle of inverse effectiveness). Several studies have shown that the capability of SC neurons to engage in multisensory integration requires inputs from cortex; primarily the anterior ectosylvian sulcus (AES), but also the rostral lateral suprasylvian sulcus (rLS). If these cortical inputs are deactivated the response of SC neurons to cross-modal stimulation is no different from that evoked by the most effective of its individual component stimuli (Jiang et al 2001). This phenomenon can be better understood through mathematical models. The use of mathematical models and neural networks can place the mass of data that has been accumulated about this phenomenon and its underlying circuitry into a coherent theoretical structure. In Chapter 2.1 a simple neural network model of this structure is presented; this model is able to reproduce a large number of SC behaviours like multisensory enhancement, multisensory and unisensory depression, inverse effectiveness. In Chapter 2.2 this model was improved by incorporating more neurophysiological knowledge about the neural circuitry underlying SC multisensory integration, in order to suggest possible physiological mechanisms through which it is effected. This endeavour was realized in collaboration with Professor B.E. Stein and Doctor B. Rowland during the 6 months-period spent at the Department of Neurobiology and Anatomy of the Wake Forest University School of Medicine (NC, USA), within the Marco Polo Project. The model includes four distinct unisensory areas that are devoted to a topological representation of external stimuli. Two of them represent subregions of the AES (i.e., FAES, an auditory area, and AEV, a visual area) and send descending inputs to the ipsilateral SC; the other two represent subcortical areas (one auditory and one visual) projecting ascending inputs to the same SC. Different competitive mechanisms, realized by means of population of interneurons, are used in the model to reproduce the different behaviour of SC neurons in conditions of cortical activation and deactivation. The model, with a single set of parameters, is able to mimic the behaviour of SC multisensory neurons in response to very different stimulus conditions (multisensory enhancement, inverse effectiveness, within- and cross-modal suppression of spatially disparate stimuli), with cortex functional and cortex deactivated, and with a particular type of membrane receptors (NMDA receptors) active or inhibited. All these results agree with the data reported in Jiang et al. (2001) and in Binns and Salt (1996). The model suggests that non-linearities in neural responses and synaptic (excitatory and inhibitory) connections can explain the fundamental aspects of multisensory integration, and provides a biologically plausible hypothesis about the underlying circuitry.
Resumo:
Aim: To assess if the intake of levodopa in patients with Parkinson’s Disease (PD) changes cerebral connectivity, as revealed by simultaneous recording of hemodynamic (functional MRI, or fMRI) and electric (electroencephalogram, EEG) signals. Particularly, we hypothesize that the strongest changes in FC will involve the motor network, which is the most impaired in PD. Methods: Eight patients with diagnosis of PD “probable”, therapy with levodopa exclusively, normal cognitive and affective status, were included. Exclusion criteria were: moderate-severe rest tremor, levodopa induced dyskinesia, evidence of gray or white matter abnormalities on structural MRI. Scalp EEG (64 channels) were acquired inside the scanner (1.5 Tesla) before and after the intake of levodopa. fMRI functional connectivity was computed from four regions of interest: right and left supplementary motor area (SMA) and right and left precentral gyrus (primary motor cortex). Weighted partial directed coherence (w-PDC) was computed in the inverse space after the removal of EEG gradient and cardioballistic artifacts. Results and discussion: fMRI group analysis shows that the intake of levodopa increases hemodynamic functional connectivity among the SMAs / primary motor cortex and: sensory-motor network itself, attention network and default mode network. w-PDC analysis shows that EEG connectivity among regions of the motor network has the tendency to decrease after the intake the levodopa; furthermore, regions belonging to the DMN have the tendency to increase their outflow toward the rest of the brain. These findings, even if in a small sample of patients, suggest that other resting state physiological functional networks, beyond the motor one, are affected in patients with PD. The behavioral and cognitive tasks corresponding to the affected networks could benefit from the intake of levodopa.