10 resultados para Multi-camera networks

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beamforming entails joint processing of multiple signals received or transmitted by an array of antennas. This thesis addresses the implementation of beamforming in two distinct systems, namely a distributed network of independent sensors, and a broad-band multi-beam satellite network. With the rising popularity of wireless sensors, scientists are taking advantage of the flexibility of these devices, which come with very low implementation costs. Simplicity, however, is intertwined with scarce power resources, which must be carefully rationed to ensure successful measurement campaigns throughout the whole duration of the application. In this scenario, distributed beamforming is a cooperative communication technique, which allows nodes in the network to emulate a virtual antenna array seeking power gains in the order of the size of the network itself, when required to deliver a common message signal to the receiver. To achieve a desired beamforming configuration, however, all nodes in the network must agree upon the same phase reference, which is challenging in a distributed set-up where all devices are independent. The first part of this thesis presents new algorithms for phase alignment, which prove to be more energy efficient than existing solutions. With the ever-growing demand for broad-band connectivity, satellite systems have the great potential to guarantee service where terrestrial systems can not penetrate. In order to satisfy the constantly increasing demand for throughput, satellites are equipped with multi-fed reflector antennas to resolve spatially separated signals. However, incrementing the number of feeds on the payload corresponds to burdening the link between the satellite and the gateway with an extensive amount of signaling, and to possibly calling for much more expensive multiple-gateway infrastructures. This thesis focuses on an on-board non-adaptive signal processing scheme denoted as Coarse Beamforming, whose objective is to reduce the communication load on the link between the ground station and space segment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Unlike traditional wireless networks, characterized by the presence of last-mile, static and reliable infrastructures, Mobile ad Hoc Networks (MANETs) are dynamically formed by collections of mobile and static terminals that exchange data by enabling each other's communication. Supporting multi-hop communication in a MANET is a challenging research area because it requires cooperation between different protocol layers (MAC, routing, transport). In particular, MAC and routing protocols could be considered mutually cooperative protocol layers. When a route is established, the exposed and hidden terminal problems at MAC layer may decrease the end-to-end performance proportionally with the length of each route. Conversely, the contention at MAC layer may cause a routing protocol to respond by initiating new routes queries and routing table updates. Multi-hop communication may also benefit the presence of pseudo-centralized virtual infrastructures obtained by grouping nodes into clusters. Clustering structures may facilitate the spatial reuse of resources by increasing the system capacity: at the same time, the clustering hierarchy may be used to coordinate transmissions events inside the network and to support intra-cluster routing schemes. Again, MAC and clustering protocols could be considered mutually cooperative protocol layers: the clustering scheme could support MAC layer coordination among nodes, by shifting the distributed MAC paradigm towards a pseudo-centralized MAC paradigm. On the other hand, the system benefits of the clustering scheme could be emphasized by the pseudo-centralized MAC layer with the support for differentiated access priorities and controlled contention. In this thesis, we propose cross-layer solutions involving joint design of MAC, clustering and routing protocols in MANETs. As main contribution, we study and analyze the integration of MAC and clustering schemes to support multi-hop communication in large-scale ad hoc networks. A novel clustering protocol, named Availability Clustering (AC), is defined under general nodes' heterogeneity assumptions in terms of connectivity, available energy and relative mobility. On this basis, we design and analyze a distributed and adaptive MAC protocol, named Differentiated Distributed Coordination Function (DDCF), whose focus is to implement adaptive access differentiation based on the node roles, which have been assigned by the upper-layer's clustering scheme. We extensively simulate the proposed clustering scheme by showing its effectiveness in dominating the network dynamics, under some stressing mobility models and different mobility rates. Based on these results, we propose a possible application of the cross-layer MAC+Clustering scheme to support the fast propagation of alert messages in a vehicular environment. At the same time, we investigate the integration of MAC and routing protocols in large scale multi-hop ad-hoc networks. A novel multipath routing scheme is proposed, by extending the AOMDV protocol with a novel load-balancing approach to concurrently distribute the traffic among the multiple paths. We also study the composition effect of a IEEE 802.11-based enhanced MAC forwarding mechanism called Fast Forward (FF), used to reduce the effects of self-contention among frames at the MAC layer. The protocol framework is modelled and extensively simulated for a large set of metrics and scenarios. For both the schemes, the simulation results reveal the benefits of the cross-layer MAC+routing and MAC+clustering approaches over single-layer solutions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nowadays the rise of non-recurring engineering (NRE) costs associated with complexity is becoming a major factor in SoC design, limiting both scaling opportunities and the flexibility advantages offered by the integration of complex computational units. The introduction of embedded programmable elements can represent an appealing solution, able both to guarantee the desired flexibility and upgradabilty and to widen the SoC market. In particular embedded FPGA (eFPGA) cores can provide bit-level optimization for those applications which benefits from synthesis, paying on the other side in terms of performance penalties and area overhead with respect to standard cell ASIC implementations. In this scenario this thesis proposes a design methodology for a synthesizable programmable device designed to be embedded in a SoC. A soft-core embedded FPGA (eFPGA) is hence presented and analyzed in terms of the opportunities given by a fully synthesizable approach, following an implementation flow based on Standard-Cell methodology. A key point of the proposed eFPGA template is that it adopts a Multi-Stage Switching Network (MSSN) as the foundation of the programmable interconnects, since it can be efficiently synthesized and optimized through a standard cell based implementation flow, ensuring at the same time an intrinsic congestion-free network topology. The evaluation of the flexibility potentialities of the eFPGA has been performed using different technology libraries (STMicroelectronics CMOS 65nm and BCD9s 0.11μm) through a design space exploration in terms of area-speed-leakage tradeoffs, enabled by the full synthesizability of the template. Since the most relevant disadvantage of the adopted soft approach, compared to a hardcore, is represented by a performance overhead increase, the eFPGA analysis has been made targeting small area budgets. The generation of the configuration bitstream has been obtained thanks to the implementation of a custom CAD flow environment, and has allowed functional verification and performance evaluation through an application-aware analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need for high bandwidth, due to the explosion of new multi\-media-oriented IP-based services, as well as increasing broadband access requirements is leading to the need of flexible and highly reconfigurable optical networks. While transmission bandwidth does not represent a limit due to the huge bandwidth provided by optical fibers and Dense Wavelength Division Multiplexing (DWDM) technology, the electronic switching nodes in the core of the network represent the bottleneck in terms of speed and capacity for the overall network. For this reason DWDM technology must be exploited not only for data transport but also for switching operations. In this Ph.D. thesis solutions for photonic packet switches, a flexible alternative with respect to circuit-switched optical networks are proposed. In particular solutions based on devices and components that are expected to mature in the near future are proposed, with the aim to limit the employment of complex components. The work presented here is the result of part of the research activities performed by the Networks Research Group at the Department of Electronics, Computer Science and Systems (DEIS) of the University of Bologna, Italy. In particular, the work on optical packet switching has been carried on within three relevant research projects: the e-Photon/ONe and e-Photon/ONe+ projects, funded by the European Union in the Sixth Framework Programme, and the national project OSATE funded by the Italian Ministry of Education, University and Scientific Research. The rest of the work is organized as follows. Chapter 1 gives a brief introduction to network context and contention resolution in photonic packet switches. Chapter 2 presents different strategies for contention resolution in wavelength domain. Chapter 3 illustrates a possible implementation of one of the schemes proposed in chapter 2. Then, chapter 4 presents multi-fiber switches, which employ jointly wavelength and space domains to solve contention. Chapter 5 shows buffered switches, to solve contention in time domain besides wavelength domain. Finally chapter 6 presents a cost model to compare different switch architectures in terms of cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water distribution networks optimization is a challenging problem due to the dimension and the complexity of these systems. Since the last half of the twentieth century this field has been investigated by many authors. Recently, to overcome discrete nature of variables and non linearity of equations, the research has been focused on the development of heuristic algorithms. This algorithms do not require continuity and linearity of the problem functions because they are linked to an external hydraulic simulator that solve equations of mass continuity and of energy conservation of the network. In this work, a NSGA-II (Non-dominating Sorting Genetic Algorithm) has been used. This is a heuristic multi-objective genetic algorithm based on the analogy of evolution in nature. Starting from an initial random set of solutions, called population, it evolves them towards a front of solutions that minimize, separately and contemporaneously, all the objectives. This can be very useful in practical problems where multiple and discordant goals are common. Usually, one of the main drawback of these algorithms is related to time consuming: being a stochastic research, a lot of solutions must be analized before good ones are found. Results of this thesis about the classical optimal design problem shows that is possible to improve results modifying the mathematical definition of objective functions and the survival criterion, inserting good solutions created by a Cellular Automata and using rules created by classifier algorithm (C4.5). This part has been tested using the version of NSGA-II supplied by Centre for Water Systems (University of Exeter, UK) in MATLAB® environment. Even if orientating the research can constrain the algorithm with the risk of not finding the optimal set of solutions, it can greatly improve the results. Subsequently, thanks to CINECA help, a version of NSGA-II has been implemented in C language and parallelized: results about the global parallelization show the speed up, while results about the island parallelization show that communication among islands can improve the optimization. Finally, some tests about the optimization of pump scheduling have been carried out. In this case, good results are found for a small network, while the solutions of a big problem are affected by the lack of constraints on the number of pump switches. Possible future research is about the insertion of further constraints and the evolution guide. In the end, the optimization of water distribution systems is still far from a definitive solution, but the improvement in this field can be very useful in reducing the solutions cost of practical problems, where the high number of variables makes their management very difficult from human point of view.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hierarchical organisation of biological systems plays a crucial role in the pattern formation of gene expression resulting from the morphogenetic processes, where autonomous internal dynamics of cells, as well as cell-to-cell interactions through membranes, are responsible for the emergent peculiar structures of the individual phenotype. Being able to reproduce the systems dynamics at different levels of such a hierarchy might be very useful for studying such a complex phenomenon of self-organisation. The idea is to model the phenomenon in terms of a large and dynamic network of compartments, where the interplay between inter-compartment and intra-compartment events determines the emergent behaviour resulting in the formation of spatial patterns. According to these premises the thesis proposes a review of the different approaches already developed in modelling developmental biology problems, as well as the main models and infrastructures available in literature for modelling biological systems, analysing their capabilities in tackling multi-compartment / multi-level models. The thesis then introduces a practical framework, MS-BioNET, for modelling and simulating these scenarios exploiting the potential of multi-level dynamics. This is based on (i) a computational model featuring networks of compartments and an enhanced model of chemical reaction addressing molecule transfer, (ii) a logic-oriented language to flexibly specify complex simulation scenarios, and (iii) a simulation engine based on the many-species/many-channels optimised version of Gillespie’s direct method. The thesis finally proposes the adoption of the agent-based model as an approach capable of capture multi-level dynamics. To overcome the problem of parameter tuning in the model, the simulators are supplied with a module for parameter optimisation. The task is defined as an optimisation problem over the parameter space in which the objective function to be minimised is the distance between the output of the simulator and a target one. The problem is tackled with a metaheuristic algorithm. As an example of application of the MS-BioNET framework and of the agent-based model, a model of the first stages of Drosophila Melanogaster development is realised. The model goal is to generate the early spatial pattern of gap gene expression. The correctness of the models is shown comparing the simulation results with real data of gene expression with spatial and temporal resolution, acquired in free on-line sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates context-aware wireless networks, capable to adapt their behavior to the context and the application, thanks to the ability of combining communication, sensing and localization. Problems of signals demodulation, parameters estimation and localization are addressed exploiting analytical methods, simulations and experimentation, for the derivation of the fundamental limits, the performance characterization of the proposed schemes and the experimental validation. Ultrawide-bandwidth (UWB) signals are in certain cases considered and non-coherent receivers, allowing the exploitation of the multipath channel diversity without adopting complex architectures, investigated. Closed-form expressions for the achievable bit error probability of novel proposed architectures are derived. The problem of time delay estimation (TDE), enabling network localization thanks to ranging measurement, is addressed from a theoretical point of view. New fundamental bounds on TDE are derived in the case the received signal is partially known or unknown at receiver side, as often occurs due to propagation or due to the adoption of low-complexity estimators. Practical estimators, such as energy-based estimators, are revised and their performance compared with the new bounds. The localization issue is addressed with experimentation for the characterization of cooperative networks. Practical algorithms able to improve the accuracy in non-line-of-sight (NLOS) channel conditions are evaluated on measured data. With the purpose of enhancing the localization coverage in NLOS conditions, non-regenerative relaying techniques for localization are introduced and ad hoc position estimators are devised. An example of context-aware network is given with the study of the UWB-RFID system for detecting and locating semi-passive tags. In particular a deep investigation involving low-complexity receivers capable to deal with problems of multi-tag interference, synchronization mismatches and clock drift is presented. Finally, theoretical bounds on the localization accuracy of this and others passive localization networks (e.g., radar) are derived, also accounting for different configurations such as in monostatic and multistatic networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DI Diesel engine are widely used both for industrial and automotive applications due to their durability and fuel economy. Nonetheless, increasing environmental concerns force that type of engine to comply with increasingly demanding emission limits, so that, it has become mandatory to develop a robust design methodology of the DI Diesel combustion system focused on reduction of soot and NOx simultaneously while maintaining a reasonable fuel economy. In recent years, genetic algorithms and CFD three-dimensional combustion simulations have been successfully applied to that kind of problem. However, combining GAs optimization with actual CFD three-dimensional combustion simulations can be too onerous since a large number of calculations is usually needed for the genetic algorithm to converge, resulting in a high computational cost and, thus, limiting the suitability of this method for industrial processes. In order to make the optimization process less time-consuming, CFD simulations can be more conveniently used to generate a training set for the learning process of an artificial neural network which, once correctly trained, can be used to forecast the engine outputs as a function of the design parameters during a GA optimization performing a so-called virtual optimization. In the current work, a numerical methodology for the multi-objective virtual optimization of the combustion of an automotive DI Diesel engine, which relies on artificial neural networks and genetic algorithms, was developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pervasive Sensing is a recent research trend that aims at providing widespread computing and sensing capabilities to enable the creation of smart environments that can sense, process, and act by considering input coming from both people and devices. The capabilities necessary for Pervasive Sensing are nowadays available on a plethora of devices, from embedded devices to PCs and smartphones. The wide availability of new devices and the large amount of data they can access enable a wide range of novel services in different areas, spanning from simple data collection systems to socially-aware collaborative filtering. However, the strong heterogeneity and unreliability of devices and sensors poses significant challenges. So far, existing works on Pervasive Sensing have focused only on limited portions of the whole stack of available devices and data that they can use, to propose and develop mainly vertical solutions. The push from academia and industry for this kind of services shows that time is mature for a more general support framework for Pervasive Sensing solutions able to enhance frail architectures, promote a well balanced usage of resources on different devices, and enable the widest possible access to sensed data, while ensuring a minimal energy consumption on battery-operated devices. This thesis focuses on pervasive sensing systems to extract design guidelines as foundation of a comprehensive reference model for multi-tier Pervasive Sensing applications. The validity of the proposed model is tested in five different scenarios that present peculiar and different requirements, and different hardware and sensors. The ease of mapping from the proposed logical model to the real implementations and the positive performance result campaigns prove the quality of the proposed approach and offer a reliable reference model, together with a direction for the design and deployment of future Pervasive Sensing applications.