7 resultados para Mountains
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis focuses on the impact of climate change in alpine ecosystems stressing the response of high elevation terricolous lichen communities. In fact, despite the strong sensitivity of cryptogams to changes in climatic factors, information is still scanty.We collected records in 154 plots placed in the summit area of the Majella Massif. In Following a multitaxon approach, Chapter 1 includes cryptogams and vascular plants. We analysed patterns in species richness, beta diversity and functional composition. In Chapter 2, we analysed the relationships between climatic variables and phylogenetic diversity and structure indices. Chapter 3 provides a long-term response relative to the consequences of climate change on a representative terricolous lichen genus across the Alps. Chapter 4 explores the relationships between the species richness and the functional composition of lichen growing on two types of substrates (carbonatic and siliceous soils) along different elevation gradients in the Eastern Alps. Climate change could affect cryptogams and lichens much more than vascular plants in Mediterranean mountains. Contrasting species-climate and traits-climate relationships were found between lichens and bryophytes, suggesting that each group may be sensitive to different components of climate change. Ongoing climate change may also lead to a loss of genetic diversity at high elevation ranges in the Mediterranean mountains, pauperising the life history richness of lichens. Alpine results forecasted that moderate range loss dynamics will occur at low elevation and in peripheral areas of the alpine chain. Results also support the view that range dynamics could be associated with functional traits mainly related to water-use strategies, dispersal, and establishment ability. We also highlighted the importance of substrates as a main driver of both species’ richness and functional traits composition. A “trade-off” also occurs between stress tolerance and the competitive response of communities of terricolous lichens that grow above siliceous and carbonatic soils.
Resumo:
Understanding the natural and forced variability of the atmospheric general circulation and its drivers is one of the grand challenges in climate science. It is of paramount importance to understand to what extent the systematic error of climate models affects the processes driving such variability. This is done by performing a set of simulations (ROCK experiments) with an intermediate complexity atmospheric model (SPEEDY), in which the Rocky Mountains orography is increased or decreased to influence the structure of the North Pacific jet stream. For each of these modified-orography experiments, the climatic response to idealized sea surface temperature anomalies of varying intensity in the El Niño Southern Oscillation (ENSO) region is studied. ROCK experiments are characterized by variations in the Pacific jet stream intensity whose extension encompasses the spread of the systematic error found in Coupled Model Intercomparison Project (CMIP6) models. When forced with ENSO-like idealised anomalies, they exhibit a non-negligible sensitivity in the response pattern over the Pacific North American region, indicating that the model mean state can affect the model response to ENSO. It is found that the classical Rossby wave train response to ENSO is more meridionally oriented when the Pacific jet stream is weaker and more zonally oriented with a stronger jet. Rossby wave linear theory suggests that a stronger jet implies a stronger waveguide, which traps Rossby waves at a lower latitude, favouring a zonal propagation of Rossby waves. The shape of the dynamical response to ENSO affects the ENSO impacts on surface temperature and precipitation over Central and North America. A comparison of the SPEEDY results with CMIP6 models suggests a wider applicability of the results to more resources-demanding climate general circulation models (GCMs), opening up to future works focusing on the relationship between Pacific jet misrepresentation and response to external forcing in fully-fledged GCMs.
Resumo:
This thesis investigates mechanisms and boundary conditions that steer the early localisation of deformation and strain in carbonate multilayers involved in thrust systems, under shallow and mid-crustal conditions. Much is already understood about deformation localisation, but some key points remain loosely constrained. They encompass i) the understanding of which structural domains can preserve evidence of early stages of tectonic shortening, ii) the recognition of which mechanisms assist deformation during these stages and iii) the identification of parameters that actually steer the beginning of localisation. To clarify these points, the thesis presents the results of an integrated, multiscale and multi-technique structural study that relied on field and laboratory data to analyse the structural, architectural, mineralogical and geochemical features that govern deformation during compressional tectonics. By focusing on two case studies, the Eastern Southern Alps (northern Italy), where deformation is mainly brittle, and the Oman Mountains (northeastern Oman), where ductile deformation dominates, the thesis shows that the deformation localisation is steered by several mechanisms that mutually interact at different stages during compression. At shallow crustal conditions, derived conceptual and numerical models show that both inherited (e.g., stratigraphic) and acquired (e.g., structural) features play a key role in steering deformation and differentiating the seismic behaviour of the multilayer succession. At the same time, at deeper crustal conditions, strain localises in narrow domains in which fluids, temperature, shear strain and pressure act together during the development of the internal fabric and the chemical composition of mylonitic shear zones, in which localisation took place under high-pressure (HP) and low-temperature (LT) conditions. In particular, results indicate that those shear zones acted as “sheltering structural capsules” in which peculiar processes can happen and where the results of these processes can be successively preserved even over hundreds of millions of years.
Resumo:
Thermal infrared (IR, 10.5 – 12.5 m) images from the Meteosat Visible and Infrared Imager (MVIRI) of cold cloud episodes (cloud top brightness temperature < 241 K) are used as a proxy of precipitating clouds to derive a warm season (May-August) climatology of their coherency, duration, span, and speed over Europe and the Mediterranean. The analysis focuses over the 30°-54°N, 15°W-40°E domain in May-August 1996-2005. Harmonic analysis using discrete Fourier transforms is applied together with a statistical analysis and an investigation of the diurnal cycle. This study has the objective to make available a set of results on the propagation dynamics of the cloud systems with the aim of assist numerical modellers in improving summer convection parameterization. The zonal propagation of cold cloud systems is accompanied by a weak meridional component confined to narrow latitude belts. The persistence of cold clouds over the area evidences the role of orography, the Pyrenees, the Alps, the Balkans and Anatolia. A diurnal oscillation is found with a maximum marking the initiation of convection in the lee of the mountains and shifting from about 1400 UTC at 40°E to 1800 UTC at 0°. A moderate eastward propagation of the frequency maximum from all mountain chains across the domain exists and the diurnal maxima are completely suppressed west of 5°W. The mean power spectrum of the cold cloud frequency distribution evidences a period of one day all over Europe disappearing over the ocean (west of 10°W). Other maxima are found in correspondence of 6 to 10 days in the longitudes from 15° W to 0° and indicate the activity of the westerlies with frontal passage over the continent. Longer periods activities (from 15 up to 30 days) were stronger around 10° W and from 5° W to 15° E and are likely related to the Madden Julian Oscillation influence. The maxima of the diurnal signal are in phase with the presence of elevated terrain and with land masses. A median zonal phase speed of 16.1 ms-1 is found for all events ≥ 1000 km and ≥ 20 h and a full set of results divided by years and recurrence categories is also presented.
Resumo:
The Vrancea region, at the south-eastern bend of the Carpathian Mountains in Romania, represents one of the most puzzling seismically active zones of Europe. Beside some shallow seismicity spread across the whole Romanian territory, Vrancea is the place of an intense seismicity with the presence of a cluster of intermediate-depth foci placed in a narrow nearly vertical volume. Although large-scale mantle seismic tomographic studies have revealed the presence of a narrow, almost vertical, high-velocity body in the upper mantle, the nature and the geodynamic of this deep intra-continental seismicity is still questioned. High-resolution seismic tomography could help to reveal more details in the subcrustal structure of Vrancea. Recent developments in computational seismology as well as the availability of parallel computing now allow to potentially retrieve more information out of seismic waveforms and to reach such high-resolution models. This study was aimed to evaluate the application of a full waveform inversion tomography at regional scale for the Vrancea lithosphere using data from the 1999 six months temporary local network CALIXTO. Starting from a detailed 3D Vp, Vs and density model, built on classical travel-time tomography together with gravity data, I evaluated the improvements obtained with the full waveform inversion approach. The latter proved to be highly problem dependent and highly computational expensive. The model retrieved after the first two iterations does not show large variations with respect to the initial model but remains in agreement with previous tomographic models. It presents a well-defined downgoing slab shape high velocity anomaly, composed of a N-S horizontal anomaly in the depths between 40 and 70km linked to a nearly vertical NE-SW anomaly from 70 to 180km.
Resumo:
The Variscan basement of Northern Apennines (Northern Italy) is a polymetamorphic portion of continental crust. This thesis investigated the metamorphic history of this basement occurring in the Cerreto Pass, in the Pontremoli well, and in the Pisani Mountains. The study comprised fieldwork, petrography and microstructural analysis, determination of the bulk rock and mineral composition, thermodynamic modelling, conventional geothermobarometry, monazite chemical dating and Ar/Ar dating of muscovite. The reconstructed metamorphic evolution of the selected samples allowed to define a long-lasting metamorphic history straddling the Variscan and Alpine orogenesis. Some general petrological issues generally found in low- to medium-grade metapelites were also tackled: (i) With middle-grade micaschist it is possible to reconstruct a complete P-T-D path by combining microstructural analysis and thermodynamic modelling. Prekinematic white mica may preserve Mg-rich cores related to the pre-peak stage. Mn-poor garnet rim records the peak metamorphism. Na-rich mylonitic white mica, the XFe of chlorite and the late paragenesis may constrain the retrograde stage. (ii) Metapelites may contain coronitic microstructures of apatite + Th-silicate, allanite and epidote around unstable monazite grains. Chemistry and microstructure of Th-rich monazite relics surrounded by this coronitic microstructure may suggest that monazite mineral was inherited and underwent partial dissolution and fluid-aided replacement by REE-accessory minerals at 500-600°C and 5-7 kbar. (iii) Fish-shaped white mica is not always a (prekinematic) mica-fish. Observed at high-magnification BSE images it may consist of several white mica formed during a mylonitic stage. Hence, the asymmetric foliation boudin is a suitable microstructure to obtain geochronological information about the shearing stage. (iv) Thermodynamic modelling of a hematite-rich metasedimentary rock fails to reproduce the observed mineral compositions when the bulk Fe2O3 is neglected or determined through titration. The mismatch between observed and computed mineral compositions and assemblage is resolved by tuning the effective ferric iron content by P-XFe2O3 diagrams.
Resumo:
Il seguente lavoro analizza lo sviluppo dell’occupazione territoriale dell’area collinare e montana del bolognese e della Romagna nell’età del Bronzo. Si sono censite le attestazioni archeologiche relative all’età del Bronzo nell’area di studio, per analizzare le tendenze insediative e le loro eventuali modificazioni nel corso del tempo, onde individuare le strategie alla base del scelta del luogo da insediare e le eventuali vie di percorrenza. Attraverso l’analisi tipologica del materiale rinvenuto nei vari contesti si è cercato di determinare le influenze culturali provenienti dal centro Italia o dalla zona terramaricola. Per raggiungere questo obbiettivo si sono analizzati i dati di archivio della Soprintendenza ai beni archeologici dell’Emilia Romagna e l’Archivio Renato Scarani, protagonista delle ricerche archeologiche in Emilia Romagna per il periodo degli anni ’50-’70 del XX secolo, recentemente acquisito dall’Università di Bologna. Ai dati desunti dagli archivi, che in molti casi hanno chiarito le vicende concernenti le indagini ed i posizionamenti di molti dei siti segnalati ed esplorati tra la seconda metà del XIX e gli anni ’70 del XX secolo, che costituiscono la maggioranza del campione analizzato, si sono aggiunti i dati recentemente acquisiti a seguito degli scavi a Monterenzio Località Chiesa Vecchia (Bo), uno dei siti più importanti (per stratigrafia conservata e per contesto territoriale) dell'Appennino Bolognese.