6 resultados para Motif Discovery
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The study of protein expression profiles for biomarker discovery in serum and in mammalian cell populations needs the continuous improvement and combination of proteins/peptides separation techniques, mass spectrometry, statistical and bioinformatic approaches. In this thesis work two different mass spectrometry-based protein profiling strategies have been developed and applied to liver and inflammatory bowel diseases (IBDs) for the discovery of new biomarkers. The first of them, based on bulk solid-phase extraction combined with matrix-assisted laser desorption/ionization - Time of Flight mass spectrometry (MALDI-TOF MS) and chemometric analysis of serum samples, was applied to the study of serum protein expression profiles both in IBDs (Crohn’s disease and ulcerative colitis) and in liver diseases (cirrhosis, hepatocellular carcinoma, viral hepatitis). The approach allowed the enrichment of serum proteins/peptides due to the high interaction surface between analytes and solid phase and the high recovery due to the elution step performed directly on the MALDI-target plate. Furthermore the use of chemometric algorithm for the selection of the variables with higher discriminant power permitted to evaluate patterns of 20-30 proteins involved in the differentiation and classification of serum samples from healthy donors and diseased patients. These proteins profiles permit to discriminate among the pathologies with an optimum classification and prediction abilities. In particular in the study of inflammatory bowel diseases, after the analysis using C18 of 129 serum samples from healthy donors and Crohn’s disease, ulcerative colitis and inflammatory controls patients, a 90.7% of classification ability and a 72.9% prediction ability were obtained. In the study of liver diseases (hepatocellular carcinoma, viral hepatitis and cirrhosis) a 80.6% of prediction ability was achieved using IDA-Cu(II) as extraction procedure. The identification of the selected proteins by MALDITOF/ TOF MS analysis or by their selective enrichment followed by enzymatic digestion and MS/MS analysis may give useful information in order to identify new biomarkers involved in the diseases. The second mass spectrometry-based protein profiling strategy developed was based on a label-free liquid chromatography electrospray ionization quadrupole - time of flight differential analysis approach (LC ESI-QTOF MS), combined with targeted MS/MS analysis of only identified differences. The strategy was used for biomarker discovery in IBDs, and in particular of Crohn’s disease. The enriched serum peptidome and the subcellular fractions of intestinal epithelial cells (IECs) from healthy donors and Crohn’s disease patients were analysed. The combining of the low molecular weight serum proteins enrichment step and the LCMS approach allowed to evaluate a pattern of peptides derived from specific exoprotease activity in the coagulation and complement activation pathways. Among these peptides, particularly interesting was the discovery of clusters of peptides from fibrinopeptide A, Apolipoprotein E and A4, and complement C3 and C4. Further studies need to be performed to evaluate the specificity of these clusters and validate the results, in order to develop a rapid serum diagnostic test. The analysis by label-free LC ESI-QTOF MS differential analysis of the subcellular fractions of IECs from Crohn’s disease patients and healthy donors permitted to find many proteins that could be involved in the inflammation process. Among them heat shock protein 70, tryptase alpha-1 precursor and proteins whose upregulation can be explained by the increased activity of IECs in Crohn’s disease were identified. Follow-up studies for the validation of the results and the in-depth investigation of the inflammation pathways involved in the disease will be performed. Both the developed mass spectrometry-based protein profiling strategies have been proved to be useful tools for the discovery of disease biomarkers that need to be validated in further studies.
Resumo:
The structural peculiarities of a protein are related to its biological function. In the fatty acid elongation cycle, one small carrier protein shuttles and delivers the acyl intermediates from one enzyme to the other. The carrier has to recognize several enzymatic counterparts, specifically interact with each of them, and finally transiently deliver the carried substrate to the active site. Carry out such a complex game requires the players to be flexible and efficiently adapt their structure to the interacting protein or substrate. In a drug discovery effort, the structure-function relationships of a target system should be taken into account to optimistically interfere with its biological function. In this doctoral work, the essential role of structural plasticity in key steps of fatty acid biosynthesis in Plasmodium falciparum is investigated by means of molecular simulations. The key steps considered include the delivery of acyl substrates and the structural rearrangements of catalytic pockets upon ligand binding. The ground-level bases for carrier/enzyme recognition and interaction are also put forward. The structural features of the target have driven the selection of proper drug discovery tools, which captured the dynamics of biological processes and could allow the rational design of novel inhibitors. The model may be perspectively used for the identification of novel pathway-based antimalarial compounds.
Resumo:
The subject of this thesis is multicolour bioluminescence analysis and how it can provide new tools for drug discovery and development.The mechanism of color tuning in bioluminescent reactions is not fully understood yet but it is object of intense research and several hypothesis have been generated. In the past decade key residues of the active site of the enzyme or in the surface surrounding the active site have been identified as responsible of different color emission. Anyway since bioluminescence reaction is strictly dependent from the interaction between the enzyme and its substrate D-luciferin, modification of the substrate can lead to a different emission spectrum too. In the recent years firefly luciferase and other luciferases underwent mutagenesis in order to obtain mutants with different emission characteristics. Thanks to these new discoveries in the bioluminescence field multicolour luciferases can be nowadays employed in bioanalysis for assay developments and imaging purposes. The use of multicolor bioluminescent enzymes expanded the potential of a range of application in vitro and in vivo. Multiple analysis and more information can be obtained from the same analytical session saving cost and time. This thesis focuses on several application of multicolour bioluminescence for high-throughput screening and in vivo imaging. Multicolor luciferases can be employed as new tools for drug discovery and developments and some examples are provided in the different chapters. New red codon optimized luciferase have been demonstrated to be improved tools for bioluminescence imaging in small animal and the possibility to combine red and green luciferases for BLI has been achieved even if some aspects of the methodology remain challenging and need further improvement. In vivo Bioluminescence imaging has known a rapid progress since its first application no more than 15 years ago. It is becoming an indispensable tool in pharmacological research. At the same time the development of more sensitive and implemented microscopes and low-light imager for a better visualization and quantification of multicolor signals would boost the research and the discoveries in life sciences in general and in drug discovery and development in particular.
Resumo:
In the last decade, the reverse vaccinology approach shifted the paradigm of vaccine discovery from conventional culture-based methods to high-throughput genome-based approaches for the development of recombinant protein-based vaccines against pathogenic bacteria. Besides reaching its main goal of identifying new vaccine candidates, this new procedure produced also a huge amount of molecular knowledge related to them. In the present work, we explored this knowledge in a species-independent way and we performed a systematic in silico molecular analysis of more than 100 protective antigens, looking at their sequence similarity, domain composition and protein architecture in order to identify possible common molecular features. This meta-analysis revealed that, beside a low sequence similarity, most of the known bacterial protective antigens shared structural/functional Pfam domains as well as specific protein architectures. Based on this, we formulated the hypothesis that the occurrence of these molecular signatures can be predictive of possible protective properties of other proteins in different bacterial species. We tested this hypothesis in Streptococcus agalactiae and identified four new protective antigens. Moreover, in order to provide a second proof of the concept for our approach, we used Staphyloccus aureus as a second pathogen and identified five new protective antigens. This new knowledge-driven selection process, named MetaVaccinology, represents the first in silico vaccine discovery tool based on conserved and predictive molecular and structural features of bacterial protective antigens and not dependent upon the prediction of their sub-cellular localization.
Resumo:
Allergy is a common hypersensitivity disorder that affects 15% to 20% of the population and its prevalence is increasing worldwide. Its severity correlates with the degree of eosinophil infiltration into the conjunctiva, which is mediated by chemokines that stimulate the production of adhesion molecules like intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) on the endothelial cell surface. The α4β1 and α4β7 integrins are expressed in eosinophils and contribute to their activation and infiltration in AC through the binding to VCAM-1 or fibronectin, expressed on vascular endothelial cells. Blockade of α4 integrins might be a therapeutical achievement in allergic eye diseases. DS 70, that show an IC50 in the nanomolar range against α4β1 integrin in Jurkat cells and in the eosinophilic cell line EOL-1. This compound was able to prevent cell adhesion to VCAM-1 and FN in vitro. In a scintillation proximity assay DS70 displaced 125I-FN binding to human α4β1 integrin and, in flow cytometry analysis, it antagonized the binding of a primary antibody to α4β1 integrin expressed on the Jurkat cells surface as well. Furthermore, we analysed also its effects on integrin α4β1 signalling. In an vivo model of allergic conjunctivitis, topical DS70 reduced the clinical aspects of EPR (early phase reaction) and LPR (late phase reaction), by reducing clinical score, eosinophil accumulation, mRNA levels of cytochines and chemochines pro-inflammatory and the conjunctival expression of α4 integrin. In conclusion, DS70 seems a novel antiallergic ocular agent that has significant effects on both early and late phases of ocular allergy.